

Aplicaciones de la Integral

Cálculo Integral

Libro: Apuntes de Cálculo USM Gruenberg, V. (2016)

Áreas entre curvas

Sea f una función no negativa y acotada definida en el intervalo $[a,b] \subseteq \mathbb{R}$. Queremos definir el área de regiones del tipo:

$$\mathcal{R} = \{(x,y) : x \in [a,b], y \in [0,f(x)]\}$$

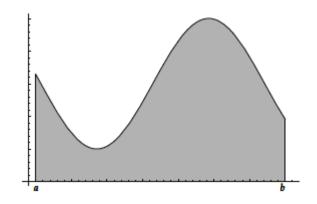
Las condiciones básicas que debería cumplir nuestra definición son:

- i. $U \subseteq V \Rightarrow \text{área}(U) \leq \text{área}(V)$
- ii. Si área $(U \cap V) = 0$ entonces área $(U \cup V) =$ área(U) + área(V)
- iii. Si R es un rectángulo de lados a y b entonces área(R) = ab

Si designamos el área de \mathcal{R} por $A_a^b(f)$ entonces las propiedades anteriores se traducen como.

- 1. Si $\forall x \in [a,b], 0 \le f(x) \le g(x)$ entonces $A_a^b(f) \le A_a^b(g)$
- 2. $\forall c \in [a,b]$ se cumple $A_a^b(f) = A_a^c(g) + A_c^b(g)$
- 3. $A_a^b(c) = c(b-a)$

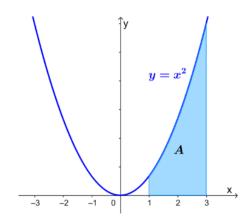
Sea $f:[a,b]\to\mathbb{R}$ una función continua y positiva. Representaremos por G(f,a,b) la región del plano comprendida entre la curva y=f(x), el eje de abscisas y las rectas y=a,y=b



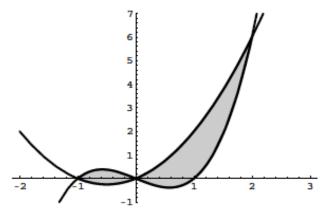
$$A_a^b(f) = \int_a^b f(x) \, dx$$

Ejemplo

¿Cuál es el área bajo la curva representada por $y=x^2$ entre x=1 y x=3?



Áreas entre curvas



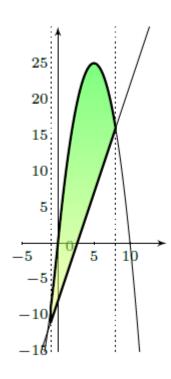
Área entre dos curvas.

Obs.: el área encerrada por dos funciones arbitrarias y = f(x), y = g(x) entre las rectas x = a y x = b es

$$A = \int_{a}^{b} \left| f(x) - g(x) \right| dx$$

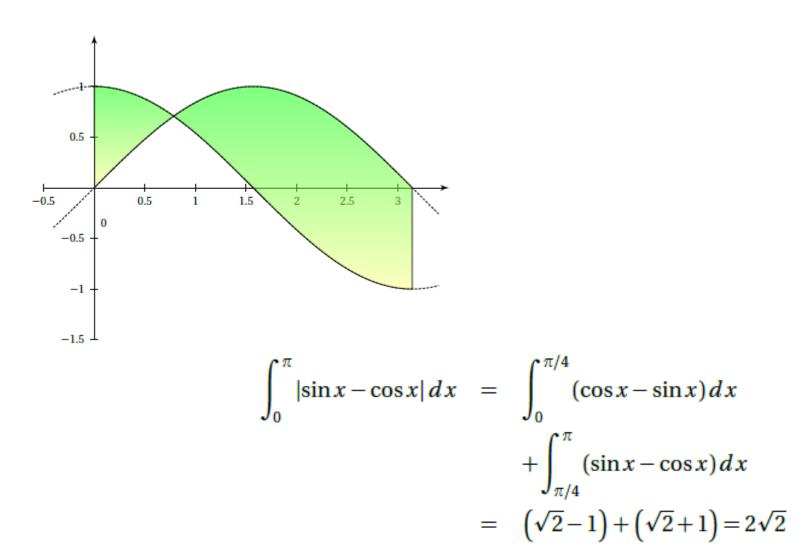
Ejercicio

Hallar el área de la región encerrada por las curvas $y=10x-x^2$ y y=3x-8.



$$\int_{-1}^{8} \left| \left(10x - x^2 \right) - \left(3x - 8 \right) \right| dx = \int_{-1}^{8} \left(10x - x^2 - \left(3x - 8 \right) \right) dx = \frac{243}{2}$$

Ejercicio Hallar el área *A* encerrada por las curvas $y = \sin x$, $y = \cos x$ entre las rectas x = 0 y $x = \pi$.



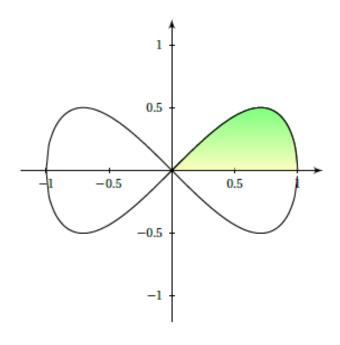
Ejercicio Encontrar el área encerrada por la curva cerrada $y^2 = x^2 - x^4$.

Solución: Note que $y^2 \ge 0$ entonces $x^2 - x^4 \ge 0 \Leftrightarrow x^2(1-x^2) \ge 0$ esto es $x \in [-1,1]$. De la ecuación

$$y^2 = x^2 - x^4$$

obtenemos las funciones

$$y = \pm \sqrt{x^2 - x^4} = \pm |x| \sqrt{1 - x^2}$$



$$\int_{-1}^{1} \left(|x| \sqrt{1 - x^2} - \left(-|x| \sqrt{1 - x^2} \right) \right) dx$$

$$= 2 \int_{-1}^{1} |x| \sqrt{1 - x^2} dx$$

$$= 4 \int_{0}^{1} x \sqrt{1 - x^2} = \frac{4}{3}$$

Calcular el área de la región comprendida entre las curvas:

(a)
$$y = \frac{2|x|}{1+x^2}$$
, $x = -2$, $x = 1$ y el eje X

(b)
$$y = x^2$$
, $y = x^3$, $x = -1$, $x = 2$

(c)
$$y = 4 - x^2$$
, $y = \ln(2x - 3)$, $y = 1$

(d)
$$xy = 1$$
, $xy = 3$, $x - xy = 1$, $x - xy = 3$

(e)
$$y = x^2$$
, $x^2 = 4y$, $x + y = 6$

(f)
$$y = |x^3 - 4x^2 + x + 6|$$
, $3y + x^2 = 0$, $x = 4$

(g)
$$y = arcosen(x), y = arccos(x), y = 0$$

(h)
$$x^{2/3} + y^{2/3} = 1$$

(i)
$$y^2 = 4x^3$$
, $y = 2x^2$.

Rpta: ln(10)

Rpta:
$$\frac{25}{12}$$

Rpta:
$$\left(\frac{e}{2} + 2\sqrt{3} - \frac{13}{3}\right)$$

Rpta: ln(729/256)

Rpta:
$$\frac{1}{3}(28\sqrt{7}-62)$$

Rpta:
$$\frac{341}{18}$$

Rpta:
$$\sqrt{2}-1$$

Rpta:
$$3\pi/8$$

