

La Antiderivada

Cálculo Integral

Libro: Apuntes de Cálculo USM Gruenberg, V. (2016)

Antiderivadas o Primitivas de una función

DEFINICIÓN

Sea $f:A\subseteq\mathbb{R}\to\mathbb{R}$ una función. Una primitiva (o antiderivada) de f en A es una función $g:A\to\mathbb{R}$ continua, tal que $g'(x)=f(x)\ \forall x\in A$, excepto a lo más en un número finito de puntos.

EJEMPLOS:

- Una primitiva para la función f(x) = sen(x) es g(x) = -cos(x). Otra primitiva para esta función es h(x) = -cos(x) + k cualquiera sea k∈R.
 - En efecto, basta derivar y comprobar: $(-\cos(x) + k)' = -(-\sin(x)) = \sin(x)$
- 2. Una primitiva para la función f(x) = 2x es $g(x) = x^2 + C$.
- 3. Una primitiva para la función f(x) = 2x + 3 es $g(x) = x^2 + 3x + C$.

4. Sea I un intervalo en \mathbb{R} . Para encontrar una primitiva para la función $\chi_I(x) = \begin{cases} 1 & \text{si } x \in I \\ 0 & \text{si } x \notin I \end{cases}$ notamos que no hay ninguna función cuya derivada sea igual a χ_I , $\forall x \in \mathbb{R}$.

Sin embargo, esta función posee una antiderivada: $g(x) = \begin{cases} 0 & \text{si} & x < a \\ x - a & \text{si} & a \le x \le b \\ b - a & \text{si} & x > b \end{cases}$

Vemos que g es continua en \mathbb{R} , y que es diferenciable allí, excepto en $x = a \land x = b$.

Considerar la función

$$f(x) = \begin{cases} 2x+1 & x \le 0 \\ x^2 - 3 & x > 0 \end{cases}$$

Una primitiva para f(x) es la fun **OBSERVACIÓN**:

Es claro, de los ejemplos anteriores, que las primitivas no son únicas. Más aún, si g es una antiderivada de f, entonces g + C, C = cte. también es una antiderivada de f, es decir:

Otra primitiva es

$$g_2(x) = \begin{cases} x^2 + x + 5 & x \le 0 \\ \frac{x^3}{3} - 3x + 5 & x > 0 \end{cases}$$

Observar que ni $g_1(x)$ ni $g_2(x)$ son derivables en x = 0.

PROPOSICIÓN primitiva de f. Sea $f:A\subseteq\mathbb{R}\to\mathbb{R}$. Si g es una primitiva de f en A entonces g(x)+C es una

PROPOSICIÓN $C \in \mathbb{R}$. Si A es un **intervalo** y g, h son primitivas de f entonces h(x) = g(x) + C para algún

Dem. Basta probar que la función j = h - g es constante en el intervalo A. Como h y g son antiderivadas, en particular son continuas, \therefore j es continua en A.

Por el mismo motivo, j'(x) = h'(x) - g'(x) = f(x) - f(x) = 0 excepto, a lo más, en un número finito de puntos.

Sean $a, b \in A$ arbitrarios, y denotemos por x_1, \dots, x_{n-1} a los puntos ordenados en $a, b \in A$ arbitrarios, y denotemos por $a, b \in A$ arbitrarios por $a, b \in A$ arbitrarios, y denotemos por $a, b \in A$ arbitrarios por a, b

Como j es continua en el intervalo $[x_0, x_1]$ y diferenciable en $]x_0, x_1[$, tenemos, por el Teorema del Valor Medio que:

$$\exists c \in]x_0, x_1[: j(x_1) - j(x_0) = j'(c)(x_1 - x_0)$$

Como j'(c) = 0, se tiene que $j(x_1) = j(x_0)$. Aplicando el mismo razonamiento a todos los intervalos $[x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, x_n]$, obtenemos

$$j(a) = j(x_0) = j(x_1) = \cdots = j(x_n) = j(b)$$

Como a, b se eligieron arbitrariamente en el intervalo A, se tiene que j es constante en A.

OBSERVACIÓN: La hipótesis que la función esté definida en un **intervalo** es muy importante. Considere $D = \mathbb{R} - \{0\}$ y las funciones $g, h: D \to \mathbb{R}$ dadas por

$$g(h) = \frac{1}{x}$$
 y $h(x) = \begin{cases} \frac{1}{x} + 5 & \text{si } x > 0 \\ \frac{1}{x} - 8 & \text{si } x < 0 \end{cases}$

Claramente, g y h son antiderivadas de $f(x) = -\frac{1}{x^2}$. Pero,

$$g(x) - h(x) = \begin{cases} -5 & \text{si } x > 0 \\ 8 & \text{si } x < 0 \end{cases}$$

que no es una función constante. Esto sucede porque D no es un intervalo.

0

Notación: Escribimos
$$\int f(x) dx = g(x) + C$$
 para indicar la «familia» de todas las primitivas de f .

Tabla de Primitivas

1.-
$$\int dx = x + C$$
2.-
$$\int x^a dx = \frac{x^{a+1}}{a+1} + C \quad \forall a \neq -1$$
3.-
$$\int \frac{1}{x} dx = \ln(|x|) + C$$
4.-
$$\int \operatorname{sen} x dx = -\operatorname{cos} x + C$$
5.-
$$\int \operatorname{cos} x dx = \operatorname{sen} x + C$$
6.-
$$\int \tan x dx = -\ln(|\cos x|) + C$$
7.-
$$\int \operatorname{cotg} x dx = \ln(|\sin x|) + C$$
8.-
$$\int \operatorname{sec}^2(x) dx = \tan(x) + C$$
9.-
$$\int \operatorname{sec}(x) \tan(x) dx = \operatorname{sec}(x) + C$$
10.-
$$\int e^x dx = e^x + C$$
11.-
$$\int \frac{1}{\sqrt{1-x^2}} dx = \operatorname{arc} \operatorname{sen}(x) + C$$
12.-
$$\int \frac{1}{1+x^2} dx = \operatorname{arc} \tan(x) + C$$

PROPOSICIÓN

Sean $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$. Entonces:

EJEMPLO:

Calcular
$$\int (x^{1/2} + x)^2 dx$$

Solución: Notemos que
$$(x^{1/2} + x)^2 = x + 2x^{1/2}x + x^2 = x + 2x^{3/2} + x^2$$

$$\int (x^{1/2} + x)^2 dx = \int (x + 2x^{3/2} + x^2) dx$$

$$= \int x dx + \int 2x^{3/2} dx + \int x^2 dx$$

$$= \frac{x^2}{2} + 2 \int x^{3/2} dx + \frac{x^3}{3}$$

$$= \frac{x^2}{2} + 2 \left(\frac{x^{5/2}}{5/2}\right) + \frac{x^3}{3} + C$$

$$= \frac{x^2}{2} + \frac{4x^{5/2}}{5} + \frac{x^3}{3} + C$$

2. Calcular $\int \frac{\sqrt{x}+1}{x} dx$

.

Solución: Notemos que $\frac{\sqrt{x}+1}{x} = \frac{\sqrt{x}}{x} + \frac{1}{x}$ entonces

$$\int \frac{\sqrt{x}+1}{x} dx = \int \left(\frac{\sqrt{x}}{x} + \frac{1}{x}\right) dx$$

$$= \int \left(x^{-1/2} + \frac{1}{x}\right) dx$$

$$= \int x^{-1/2} dx + \int \frac{1}{x} dx$$

$$= 2x^{1/2} + \ln|x| + C$$

3. Calcular $\int \cos^4 x \, dx$

Solución: Usando identidades trigonométricas

$$\cos^4 x = \left(\frac{1 + \cos 2x}{2}\right)^2$$

$$= \frac{1}{4} + \cos 2x + \frac{1}{4}\cos^2(2x)$$

$$= \frac{1}{4} + \cos 2x + \frac{1}{4}\left(\frac{1 + \cos 4x}{2}\right)$$

$$= \frac{3}{8} + \cos 2x + \frac{1}{8}\cos 4x$$

$$\int \cos^4 x \, dx = \int \left(\frac{3}{8} + \cos 2x + \frac{1}{8}\cos 4x\right) dx$$
$$= \frac{3}{8}x + \frac{1}{2}\sin 2x + \frac{1}{32}\sin 4x + C$$

4. Calcular
$$\int \frac{e^x}{e^x + 1} dx$$

Solución: Notemos que si $f(x) = e^x + 1$ entonces $f'(x) = e^x$ se sigue que

$$\int \frac{e^x}{e^x + 1} dx = \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

es decir

$$\int \frac{e^x}{e^x + 1} \, \mathrm{d}x = \ln\left(e^x + 1\right) + C$$

5. Calcular
$$\int \cos(3x+1) dx$$

Solución: Sabemos calcular las primitivas de $f(x) = \cos x$ en efecto $\int \cos x \, dx = \sin x + C$ se sigue directamente de la proposición

$$\int \cos(3x+1) \, \mathrm{d}x = \frac{1}{3} \sin(3x+1) + C$$

6. Calcular $\int \sqrt{\frac{1+x}{1-x}} dx$

Solución: Vamos a manipular la expresión para calcularla en términos de primitivas elementales

$$\int \sqrt{\frac{1+x}{1-x}} \, dx = \int \sqrt{\frac{1+x}{1-x}} \sqrt{\frac{1+x}{1+x}} \, dx$$

$$= \int \frac{1+x}{\sqrt{1-x^2}} \, dx$$

$$= \int \frac{dx}{\sqrt{1-x^2}} + \int \frac{x}{\sqrt{1-x^2}} \, dx$$

$$= \arcsin x - \int \frac{-2x}{2\sqrt{1-x^2}} \, dx$$

$$= \arcsin x - \sqrt{1-x^2} + C$$

Calcular la antiderivada de la función

$$f(x) = \begin{cases} x & \text{si} \quad x \le -1 \\ 3 & \text{si} \quad -1 < x < 2 \\ 2 - x & \text{si} \quad x \ge 2 \end{cases}$$

Solución: Notar que en el intervalo $x \le -1$ la función es $f_1(x) = x$. Se sigue que en el intervalo $x \le -1$ son de la forma

$$F(x) = \frac{x^2}{2} + C_1$$

De manera similar, en el intervalo -1 < x < 2 las primitivas son de la forma

$$F(x) = 3x + C_2$$

y en el intervalo $x \ge 2$ las primitivas son de la forma

$$F(x) = 2x - \frac{x^2}{2} + C_3$$

Luego, la primitiva de f es de la forma

$$F(x) = \begin{cases} \frac{x^2}{2} + C_1 & \text{si} \quad x \le -1\\ 3x + C_2 & \text{si} \quad -1 < x < 2\\ 2x - \frac{x^2}{2} + C_3 & \text{si} \quad x \ge 2 \end{cases}$$

Pero, la definición de primitiva requiere que F sea continua, por lo que

$$\lim_{x \to -1^{-}} \left(\frac{x^2}{2} + C_1 \right) = \frac{1}{2} + C_1 = \lim_{x \to -1^{+}} (3x + C_2) = -3 + C_2$$

y

$$\lim_{x \to 2^{-}} (3x + C_2) = 6 + C_2 = \lim_{x \to 2^{+}} \left(2x - \frac{x^2}{2} + C_3 \right) = 2 + C_3$$

de donde

$$C_1 = -\frac{7}{2} + C_2$$

 $C_3 = 4 + C_2$

y entonces

$$F(x) = \begin{cases} \frac{x^2}{2} - \frac{7}{2} + C_2 & \text{si} \quad x \le -1\\ 3x + C_2 & \text{si} \quad -1 < x < 2\\ 2x - \frac{x^2}{2} + 4 + C_2 & \text{si} \quad x \ge 2 \end{cases}$$

$$= \begin{cases} \frac{x^2}{2} - \frac{7}{2} & \text{si} \quad x \le -1\\ 3x & \text{si} \quad -1 < x < 2\\ 2x - \frac{x^2}{2} + 4 & \text{si} \quad x \ge 2 \end{cases} + C_2$$

Notar que F(x) es continua y F'(x) = f(x), salvo en una cantidad finita de puntos.

PROPOSICIÓN Sean $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$. Si g es una primitiva de f y $a \neq 0$, entonces $\frac{1}{a}g(ax+b)$ es una primitiva de f(ax+b).

-

Dem.
$$\left(\frac{1}{a}g(ax+b)\right)' = \frac{1}{a}g'(ax+b) \cdot a = g'(ax+b) = f(ax+b)$$

EJEMPLO
$$\int \cos(3x+1) dx = \frac{1}{3} \sin(3x+1) + C$$

PROPOSICIÓN: Sea $f: A \subset \mathbb{R} \to \mathbb{R}$ derivable y tal que $f(x) \neq 0$ para todo $x \in A$. Entonces:

$$\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + C$$

EJEMPLO
$$\int \frac{e^x}{e^x + 1} dx = \ln(e^x + 1) + C.$$

En efecto, si derivamos el lado derecho de la igualdad, queda:

$$(\ln(e^x+1)+C)' = \frac{1}{e^x+1} \cdot (e^x+1)' = \frac{1}{e^x+1} \cdot e^x$$

EJERCICIOS:

Determine las siguientes antiderivadas

a)
$$\int (|x-1|+|x-3|) dx$$

b)
$$\int |x-|x-2||\,dx$$

2. Encuentre las siguientes antiderivadas:

a)
$$\int (x^{1/2} + x)^2 dx$$
b)
$$\int \frac{\sqrt{x} + 1}{x} dx$$
c)
$$\int \operatorname{sen} x \cos^4 x dx$$
d)
$$\int (\cos x + \operatorname{sen} x) dx$$

e)
$$\int (e^x - 1) dx$$

f)
$$\int (1-10x+9x^2) dx$$

g)
$$\int \left(3\sec^2 x + \frac{4}{x}\right) dx$$

h)
$$\int (x^{-5} + \frac{1}{\sqrt{x}}) dx$$

i)
$$\int (x\sqrt{x} + x^{\sqrt{2}}) dx$$

$$\int \left(x-\frac{1}{x}\right)^2 dx$$

$$k) \int \left(\frac{2}{\sqrt{x}} + \frac{\sqrt{x}}{2}\right) dx$$

$$l) \int \left(\frac{3+5x-6x^2-7x^3}{2x^2}\right) dx$$

$$m) \int \sqrt{x}(x^2+x+1)dx$$

$$n) \int \frac{5}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}} dx$$

$$\tilde{n}) \int \frac{x^3 + x + 1}{1 + x^2} \, dx$$

$$o) \int \frac{\tan x}{\sin x \cos x} \, dx$$

3. Separe las fracciones para determinar

a)
$$\int \frac{1-x}{\sqrt{1-x^2}} \, dx$$

c)
$$\int \frac{1 + \sin x}{\cos^2 x} \, dx$$

b)
$$\int \frac{x+2\sqrt{x-1}}{2x\sqrt{x-1}} dx$$

$$d) \int \frac{2-8x}{1+4x^2} \, dx$$

4. Multiplique por una forma de 1 adecuado para determinar

a)
$$\int \frac{1}{1 + \sin x} \, dx$$

$$d) \int \frac{1}{\cos x + \cot x} dx$$

b)
$$\int \frac{1}{1 + \cos x} \, dx$$

$$e$$
) $\int \frac{1}{1-\sec x} dx$

c)
$$\int \frac{1}{\sec x + \tan x} dx$$

$$f$$
) $\int \frac{1}{1-\csc x} dx$

5. Determine

a)
$$\int \frac{x^2}{x^2 + 1} \, dx$$

c)
$$\int \frac{4x^2 - 7}{2x + 3} dx$$

$$b) \int \frac{2x^3}{x^2 - 1} \, dx$$

d)
$$\int \frac{4x^3 - x^2 + 16x}{x^2 + 4} dx$$

