Estadística Decriptiva Univariada

Dr. Cristian Carvajal Muquillaza

Universidad de Playa Ancha

DE MATEMÁTICA

Contenido

- 1 Preliminares
- 2 Resumen de la Información
- 3 Representaciones Gráficas
- 4 Medidas Estadísticas
 - Medidas de Tendencia Central
 - Medidas de Variabilidad
 - Medidas de Posición
 - Medidas de Forma

¿ QUÉ ES LA ESTADÍSTICA?

ESTADÍSTICA

Preliminares

La Estadística es la ciencia que aporta los métodos científicos por medio de los cuales es posible recolectar, organizar, resumir, presentar y analizar datos relativos a un conjunto de individuos u observaciones y que nos permiten extraer conclusiones válidas y efectuar decisiones lógicas basadas en dicho análisis.

Población Estadística:

Preliminares

Es un conjunto P de personas, animales o cosas que son objeto de estudio de una investigación.

- Estudiantes Universitarios
- Pacientes
- Puntajes PSU
- Merluzas en la costa de Valparaíso
- Celulares Samsung.

Facultad de Ciencias Naturales y Exactas

Preliminares

Muestra

Es un subconjunto A de la población P, una parte seleccionada de la población extraída con objeto de obtener información sobre la totalidad de ésta, es decir $A \subseteq P$.

AMENTO NARIO MÁTICA ÍSTICA

Preliminares

Tipos de Muestra

Muestra Probabilística:

La selección de los sujetos es de forma aleatoria.

Tipos de Muestra

Muestra No Probabilística:

La selección de los sujetos a estudio dependerá de ciertas características, criterios, etc. que él investigador considere.

Muestreo Aleatorio simple (MAS):

Es una técnica en que cada individuo o elemento de la población tiene la misma oportunidad de ser seleccionada para pertenecer a la muestra. Este muestreo puede ser **Sin Reposición** o **Con Reposición**. Suponga una Población de tamaño N donde se extrae una muestra de tamaño n. $(x_1, x_2, ..., x_n)$

Cálculo del número de muestras posibles								
	Teniendo en cuenta el orden	Sin tener en cuenta el orden						
Sin Reposición	$n! \binom{N}{n}$	$\binom{N}{n}$						
Con Reposición	N^n	$\binom{N+n-1}{n}$						

MÁTICA

Preliminares

Ejemplo: Cálculo del número de muestras posibles

Suponga una población P de tamaño N = 3 y se quiere extraer una MAS de tamaño n = 2. Determine todas las posibles muestras.

Resp: Suponga $P = \{Leo, Nico, Pilar\}$

	Con Orden	Sin Orden
Sin Reposición	$2!\binom{3}{2} = 6$	$\binom{3}{2} = 3$
Con Reposición	$3^2 = 9$	$\binom{3+2-1}{2} = 6$

AMENTO MÁTICA STICA

Preliminares

Muestreo Aleatorio sistemático:

- En una muestra sistemática, la población de N unidades se numeran de 1 a N en cierto orden
- Para elegir una muestra de *n* unidades, se toma una unidad al azar entre las k primeras y luego tomamos las subsecuentes a intervalos de k
- La selección de la primera unidad determina toda la muestra, que se denomina "muestra de todas las k-ésimas unidades"

Preliminares

Muestreo Aleatorio sistemático:

- \blacksquare Como en general, N no es un múltiplo entero de k, las diferentes muestras sistemáticas de la misma población finita pueden variar su tamaño en 1 unidad
- Este hecho produce una perturbación despreciable si $n \ge 30$

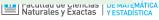
Preliminares

Ejemplo:

Suponga
$$N = 23$$
 y $k = 5$

I	II	III	IV	V
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23		

AMENTO



Muestreo Aleatorio sistemático:

- Otro método, (Lahiri) proporciona un tamaño constante de muestra y una media de muestra insesgada.
- Considérese las N unidades dispuestas alrededor de un circulo, y sea k el entero más cercano a —.
- Selecciónese un número al azar entre 1 y N y tómese cada k-ésima unidad a partir de ahí y siguiendo el círculo, hasta alcanzar las n unidades deseadas.

Preliminares

Ejemplo:

Preliminares

Suponga que se desea n = 5 con N = 23

AMENTO MÁTICA **ÍSTICA**

Muestreo Aleatorio sistemático:

- Con N = nk, las k muestras sistemáticas posibles aparecen en la tabla adjunta.
- La población se divide en k grandes de muestras,
- Cada una de estas cuenta con n unidades originales
- La operación de elegir una Muestra Sistemática Aleatoriamente Localizada, es solo la de elegir una de estas grandes unidades de muestreo al azar.

Preliminares

Muestreo Aleatorio sistemático:

Número de Muestra									
1	2		i		k				
y_1	y_2		y_i		y_k				
y_{k+1}	y_{k+2}		y_{k+i}		y_{2k}				
	•••		•••		•••				
$y_{(n-1)k+1}$	$y_{(n-1)k+2}$		$y_{(n-1)k+i}$		y_{nk}				

Preliminares

Ejemplo:

Preliminares

Se tiene una comunidad de 20 familias, y se quiere estudiar la responsabilidad en la tenencia de mascotas. Sea y_i el número de mascotas en las viviendas de la comunidad. Para el estudio se requiere una muestra sistemática de tamaño 4. Determinar todas las posibles muestras sistemáticas

u_i	1	2	3	4	5	6	7	8	9	10
y_i	0	4	2	4	5	3	1	2	6	0
u_i	11	12	13	14	15	16	17	18	19	20
y_i	7	5	1	5	0	10	8	5	5	3

AMENTO MÁTICA STICA

Ejemplo:

Preliminares

Suponga que se desea n = 5 con N = 23

AMENTO MÁTICA **ÍSTICA**

Muestreo Aleatorio Estratificado:

- La población de N unidades se divide en subpoblaciones N_1, N_2, \dots, N_T unidades.
- Estas subpoblaciones son disjuntas, es decir no se intersecan.
- $N_1 + N_2 + ... + N_L = N$
- Las subpoblaciones se denominan estratos
- Los tamaños de las muestras de cada estrato se denotan $n_1, n_2, ..., n_L$, respectivamente.
- Si se toma una muestra aleatoria simple en cada estrato, el procedimiento total se describe como un Muestreo Aleatorio Estratificado MATICA (MAE).

Preliminares

Muestreo Aleatorio Estratificado: Notación

El subíndice h denota el estrato, e i la unidad dentro del estrato. Todos los símbolos siguientes se refieren al estrato h.

Símbolo	Descripción
N_h	Número total de unidades
n_h	Número de unidades en la muestra
Уhi	Valor obtenido para la i-ésima unidad
$W_h = \frac{N_h}{N}$	Ponderación del estrato
$f_h = \frac{n_h}{N_h}$	Fracción de muestreo en el estrato

AMENTO MÁTICA STICA

Preliminares

Asignación optima de n_h

En el MAE la varianza se minimiza para un tamaño de muestral total fijo n si

$$n_{\text{h.opt}}(\text{A.N}) = n \frac{N_h s_h}{\sum N_h s_h}$$

Esta asignación se llama ASIGNACIÓN DE NEYMAN, donde

$$s_h = \sqrt{\frac{1}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \bar{y}_h)^2}$$

Preliminares

Asignación optima de n_h

En el MAE otra manera de asignación óptima para n_h está dada cuando el tamaño muestral total es fijo *n* por:

$$\frac{n_h}{n} = \frac{N_h}{N} \Rightarrow n_{\text{h.opt}}(A.P) = \frac{n \times N_h}{N}$$

A esta asignación se le llama ASIGNACIÓN PROPORCIONAL

Preliminares

Ejemplo:

Preliminares

En una población con N = 6 y L = 2, los valores de y_{hi} son 0, 1, 2 en el estrato 1 y 4, 6, 11 en el estrato 2. Se va a tomar una muestra de tamaño n = 4,

- Obtenga n_h óptimo bajo la asignación de Neyman $|n_{h,opt}(A.N)|$
- Obtenga n_h óptimo bajo la asignación Proporcional $[n_{h.opt}(A.P)]$
- Obtenga todas las muestras posibles bajo estas dos asignaciones.

Tamaño de la Muestra para la Media Poblacional (μ)

Cuando N es desconocida	$n = \left(\frac{Z_{\alpha/2} \cdot \sigma}{e}\right)^2$
Cuando N es conocida	$n = \frac{N \cdot Z_{1-\alpha/2}^2 \cdot \sigma^2}{e^2(N-1) + Z_{1-\alpha/2}^2 \cdot \sigma^2}$

Donde:

Preliminares

- σ Desviación Estándar
- $Z_{1-\alpha/2}$ Cuantil Normal
- Error Muestral Admitido

AMENTO MÁTICA STICA

Tamaño de la Muestra para la Proporción Poblacional P

Cuando N es desconocida	$n = \frac{Z_{1-\alpha/2}^2 \cdot p \cdot q}{e^2}$
Cuando N es conocida	$n = \frac{N \cdot Z_{1-\alpha/2}^2 \cdot p \cdot q}{e^2(N-1) + Z_{1-\alpha/2}^2 \cdot p \cdot q}$

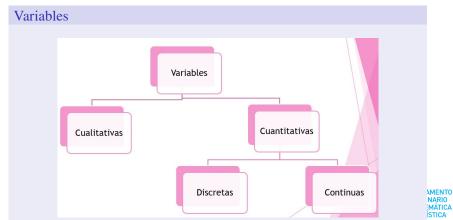
Donde:

Preliminares

- p proporción de elementos que poseen la caracteristica deseada
- σ Desviación Estándar
- $Z_{1-\alpha/2}$ Cuantil Normal
 - a Error Musetral Admitida

AMENTO MÁTICA STICA

Preliminares

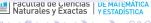


Preliminares

Escala de Medición de las Variables

Escala nominal: Una escala nominal es un sistema de clasificación cuyas categorías difieren entre si cualitativamente y no en grados o en orden. Ejemplo: Se mide sobre pacientes de un determinado hospital el barrio al cual pertenecen. La variable Barrio, es cualitativa medida en escala nominal.

Escala ordinal: Una escala ordinal es un sistema de clasificación cuyas categorías difieren entre si cualitativamente y en grados o en orden. Ejemplo: más alto, más enfermo, etc.



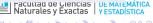
MENTO

Preliminares

Escala de Medición de las Variables

Escala intervalar: En esta escala la distancia entre las unidades de medida son uniformes. Permite realizar operaciones matemáticas, como suma, resta, multiplicación o división. El cero es arbitrario, no indica la ausencia de atributo. Ejemplo: grados centígrados.

Escala de razón: Similar a la de intervalo, con la única diferencia que el cero en esta escala sí indica la ausencia de atributo, es cero absoluto. Ejemplo: altura



00000000000000000000000

Preliminares

Ejemplo:

Variable	Tipo de variable	Escala
Edad		
Sexo		
Promedio de Notas		
Quintil de ingreso		
Educación de la Madre		
Tiempo de Estudio		
Número de libros leídos		
Número de partes policiales		
Puntaje PSU Matemática		

AMENTO NARIO MÁTICA ÍSTICA

Consideremos una población estadística de N individuos, descrita según un carácter C las cuales han sido agrupadas en un número k de clases, que denotamos mediante $C_1, ..., C_k$. Para cada una de las clases C_i con i = 1, ..., k, introducimos las siguientes frecuencias:

Frecuencia Absoluta n_i :

Es el número n_i , de observaciones que pertenecen a la clase C_i .

$$\sum_{i=1}^{k} n_i = N$$

MÁTICA STICA

Frecuencia relativa f_i :

 f_i es el cociente entre las frecuencia absoluta de la clase C_i y el número total de observaciones, es decir:

$$f_i = \frac{n_i}{N}$$

Frecuencia relativa porcentual f_i %:

Es la frecuencia relativa multiplicada por 100, es decir:

$$f_i \% = \frac{n_i}{N} \cdot 100$$

AMENTO MÁTICA STICA

Frecuencia absoluta acumulada N_i :

Es el número N_i de elementos de la población cuyo «valor» es inferior o equivalente a al valor de la clase c_i :

$$N_i = \sum_{j=1}^{i} n_j = n_1 + n_2 + \dots + n_i.$$

Frecuencia relativa acumulada F_i :

Es el número F_i , definido como el tanto por uno de los elementos de la población que están en alguna de las clases y que presentan un «valor» inferior o igual a la clase c_i , es decir

$$F_i = \frac{N_i}{n} = \frac{n_1 + \dots + n_i}{n} = f_1 + \dots + f_i = \sum_{i=1}^i f_i.$$

En síntesis se tiene:

Clase	Frec. Abs	Frec. Rel	Frec. Acum	Frec.Rel.Acum
C	n_i	f_i	N_i	F_i
$\overline{c_1}$	n_1	$f_1 = \frac{n_1}{n}$	$N_1 = n_1$	$F_1 = \frac{N_1}{n} = f_1$
÷	÷	÷	:	:
c_{j}	n_j	$f_j = \frac{n_j}{n}$	$N_j = n_1 + \dots + n_j$	$F_j = \frac{N_j}{n} = f_1 + \dots + f_j$
:	•	•	:	:
c_k	n_k	$f_k = \frac{n_k}{n}$	$N_k = n$	$F_k = 1$ AMENTO NARIO
:	:	$f_{k} = \frac{n_{k}}{n}$ \vdots	:	<i>r</i> _j –

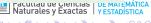
n

Ejemplo:

Construir una tabla de frecuencia INTERVALAR, dado los datos que representan los puntajes de un examen de Estadística

77	76	75	62	63	68	81	75	67	68
74	85	76	71	78	60	57	88	80	73
75	63	65	95	85	74	97	75	62	61
93	68	79	69	95	94	61	82	78	66
71	83	74	60	77	75	75	89	78	96

AMENTO NARIO



Ejemplo:

Suponga que el número de observaciones negativas de un grupo de estudiantes son los siguientes:

0	3	1	1	2	2	3	2	2	3
1	0	2	3	3	1	2	3	0	3
0	3	1	1	2	2	3	2	2	3
1	0	2	3	3	1	2	3	0	3

Construir una tabla de frecuencia SIMPLE.

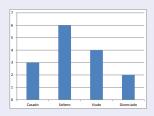
Representaciones Gráficas

Hemos visto que la tabla estadística resume los datos que disponemos de una población, de forma que ésta se puede analizar de una manera más sistemática y resumida . Para esclarecer de mejor forma nuestros datos haremos uso de gráficos y diagramas, cuya construcción abordamos en esta sección.

Gráficos para variables cualitativas

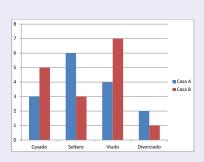
Los gráficos más usuales para representar variables de tipo nominal son los siguientes:

Gráfico de barras



AMENTO MÁTICA **ÍSTICA**

Gráficos para variables cualitativas:Barras



AMENTO NARIO MÁTICA ÍSTICA

Figura: Gráfico de barras para comparar una variable cualitativa en

200

Gráficos para variables cualitativas: Sectores

Se divide un círculo en tantas porciones como clases existan, de modo que a cada clase le corresponde un arco de círculo proporcional a su frecuencia absoluta o relativa.

AMENTO MÁTICA **ÍSTICA**

Gráficos para variables cuantitativas

Se utilizarán dos tipos de gráficos, en función de las frecuencias utilizadas (absolutas o relativas o acumuladas):

Diagramas diferenciales: Son aquellos en los que se representan frecuencias absolutas o relativas.

Diagramas integrales: Son aquellos en los que se representan el número de elementos que presentan una modalidad inferior o igual a una dada. Se realizan a partir de las frecuencias acumuladas, lo que da lugar a gráficos crecientes, y es obvio que este tipo de gráficos no tiene sentido para variables cualitativas.

AMENTO

Naturales y Exactas | YESTADÍSTICA

Gráficos para variables cuantitativas: Discretas

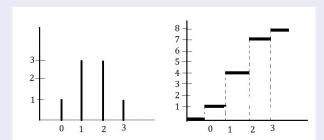


Figura: Diagrama diferencial (barras) e integral para una variable discreta. Obsérvese que el diagrama integral (creciente) contabiliza el número de observaciones de la variable inferiores o iguales a cada punto del eie de

AMENTO MÁTICA STICA

Gráficos para variables cuantitativas: Continuas

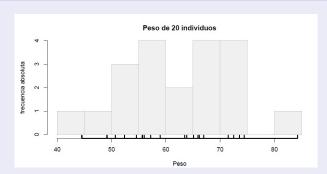


Figura: Histograma.

AMENTO NARIO MÁTICA **ÍSTICA**

Gráficos para variables cuantitativas: Continuas

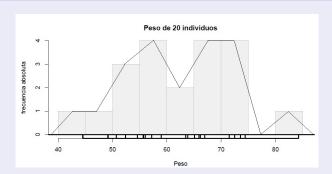
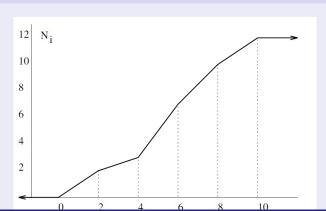


Figura: Polígono de Frecuencia.

AMENTO MÁTICA **ÍSTICA**

Gráficos para variables cuantitativas: Continuas



AMENTO NARIO MÁTICA **ÍSTICA**

Otros Gráficos: Box-Plot

Figura: Box-Plot.

Otros Gráficos: Tallo-Hoja

Tallo	Hoja
4	4 5 9
5	02334467778
6	1 2 2 3 4 7 8 9
7	011234456689
8	0 1 3 5

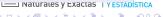
Figura: Tallo-Hoja.

Medidas Estadísticas

Medidas Estadísticas

Dado un grupo de datos organizados en una distribución de frecuencias, pretendemos describirlos mediante dos o tres Medidas Estadísticas, a saber:

- La tendencia central de los datos:
- La dispersión o variación con respecto a este centro;
- Los datos que ocupan ciertas posiciones.
- La simetría de los datos.
- La forma en la que los datos se agrupan.



Medidas Estadísticas

Medidas Estadísticas

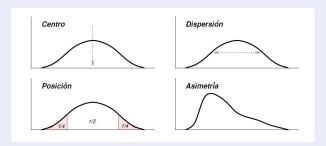


Figura: Medidas representativas de un conjunto de datos estadísticos.

AMENTO MÁTICA **ÍSTICA**

Medidas Estadísticas: Medidas de Tendencia Central

Medidas de Tendencia Central

Además de presentar la información usando tablas o gráficas es de mucha utilidad el poder presentar esta información en términos de algún valor (numérico)que la resuma en forma eficiente.

Las medidas de tendencia central son muy útiles para este propósito pues describen una distribución donde se encuentran la acumulación más alta de datos, y ello ocurre con frecuencia en el "centro" de ésta. Las tres medidas más usadas de tendencia central son:

- La Media,
- La Mediana,
- La Moda.

AMENTO MÁTICA

Medidas Estadísticas: Tendencia Central

Media Arítmetica \overline{X}

La **media aritmética** de una variable estadística es la suma de todos sus posibles valores, ponderada por las frecuencias de los mismos. Es decir, si la tabla de valores de una variable X es

X_i	n_i	f_i
x_1	n_1	f_1
	•••	
x_k	n_k	f

Medidas Estadísticas: Tendencia Central

Media Arítmetica \overline{X}

Entonces la media aritmética, la definimos

$$\overline{X} = \frac{1}{n}(x_1 n_1 + \dots + x_k n_k)$$
$$= \frac{1}{n} \sum_{i=1}^k x_i n_i.$$

Medidas Estadísticas: Tendencia Central

Media Arítmetica \overline{X}

Si los datos se presentan en una tabla de distribuciones de frecuecias, todos los valores que contenga una clase se consideran iguales a la marca de clase del intervalo, por lo tanto si la tabla es de la forma

Clase C	Marca de Clase	Frec. Abs
c_1	$M.C_1$	n_1
	•••	
c_{j}	$M.C_j$	n_j
	•••	
c_k	$M.C_k$	n_k

MÁTICA STICA

Medidas Estadísticas: Tendencia Central

Media Arítmetica \overline{X}

Entonces la Media Aritmética la definimos

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} M.C_i \times n_i.$$

Medidas Estadísticas: Tendencia Central

Media Arítmetica \overline{X}

Por último si los datos no están ordenados en una tabla, es decir están sueltos o a granel, entonces la media aritmética la definimos

$$\overline{X} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
$$= \frac{1}{n} \sum_{i=1}^{n} x_i.$$

AMENTO MÁTICA STICA

Medidas Estadísticas: Tendencia Central

Media Arítmetica \overline{X}

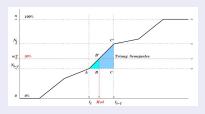
La media presenta inconvenientes en algunas situaciones:

- Uno de ellos es que es muy sensible a los valores extremos de la variable, ya que todas las observaciones intervienen en el cálculo de la media, la aparición de una observación extrema, hará que la media se desplace en esa dirección.
- no es recomendable usar la media como medida central en las distribuciones muy asimétricas;

Medidas Estadísticas: Tendencia Central

Mediana \widetilde{X}

Consideramos una variable discreta X cuyas observaciones en una tabla estadística han sido ordenadas de menor a mayor. Llamaremos mediana , al primer valor de la variable que deja por debajo de sí al 50 % de las observaciones.



AMENTO MÁTICA STICA

Medidas Estadísticas: Tendencia Central

Mediana \widetilde{X}

Sean $x_{(1)}, ..., x_{(n)}$ una muestra de n datos ordenados (creciente o decreciente), entonces la mediana se define:

$$\widetilde{X} = \begin{cases} X_{\left(\frac{n+1}{2}\right)} & si \text{ n es impar} \\ \\ X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)} \\ \hline 2 & si \text{ n es par} \end{cases}$$

MÁTICA I INDICATE OF THE PROPERTY OF

Medidas Estadísticas: Tendencia Central

Mediana \widetilde{X}

Si los datos están agrupados en una tabla de frecuencia intervalar entonces:

$$\widetilde{X} = L_{i-1} + \left(\frac{\frac{n}{2} - N_{i-1}}{n_i}\right) \cdot a_i$$

Donde:

- L_{i-1} Límite inferior de la clase mediana.
- N_{i-1} Frec. absoluta acumulada de la clase anterior a la clase mediana.
- \blacksquare n_i Frecuencia absoluta de la clase mediana.

AMENTO MÁTICA STICA

Medidas Estadísticas: Tendencia Central

Moda \mathring{X}

Llamaremos **moda** a cualquier máximo relativo de la distribución de frecuencias, es decir, cualquier valor de la variable que posea una frecuencia mayor que su anterior y su posterior.

Para datos en tablas de distribución de frecuencias intervalares definimos la moda de la siguiente manera:

$$\mathring{X} = L_{i-1} + \left(\frac{n_i - n_{i-1}}{(n_i - n_{i-1}) + (n_i - n_{i+1})}\right) \cdot a_i$$

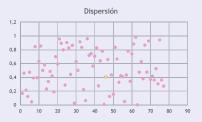
Un conjunto de datos puede:No tener Moda (Amodal); Tener más de una Moda (Polimodal)

MÁTICA

Medidas de Variabilidad

Medidas Estadísticas: Variabilidad

Las medidas de tendencia central nos indican donde se sitúa un grupo de puntuaciones. Los de variabilidad o dispersión nos indican si esas puntuaciones o valores están próximas entre sí o si por el contrario están muy dispersas.



AMENTO MÁTICA STICA

Rango

Una medida razonable de la variabilidad podría ser la amplitud o rango,que se obtiene restando el valor más bajo de un conjunto de observaciones del valor más alto, es decir:

Rango =
$$X_{\text{máx}} - X_{\text{mín}}$$

- Si Rango $\rightarrow \infty \Rightarrow$ Heterogeneo
- Si Rango \rightarrow 0 \Rightarrow Homogeneo

MÁTICA INDICATE IND

Medidas de Variabilidad

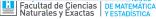
Medidas Estadísticas: Variabilidad

Varianza S²

La varianza, S^2 , se define como la media de las diferencias cuadráticas de n puntuaciones con respecto a su media aritmética, es decir

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Esta medida es siempre una cantidad positiva, con propiedades interesante para la realización de inferencia estadística.



Varianza S²

Si los datos se presentan en una tabla de distribuciones de frecuencias, entonces la varianza se define:

$$S^2 = \frac{1}{n} \sum_{i=1}^k (MC_i - \overline{x})^2 \cdot n_i$$

Desviación Estándar S

La varianza no tiene la misma magnitud que las observaciones (ej. si las observaciones se miden en metros, la varianza lo hace en metros cuadrados). Si queremos que la medida de dispersión sea de la misma dimensionalidad que las observaciones bastará con tomar su raíz cuadrada. Por ello se define la desviación típica, S, como

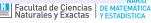
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

MÁTICA

Coeficiente de Variación

El coeficiente de variación permite comparar la dispersión de dos poblaciones, pues elimina la dimensionalidad de las variables y tiene en cuenta la proporción existente entre medias y desviación típica. Se define del siguiente modo:

$$C_{var} = \frac{S_x}{\overline{x}}$$



Medidas de Variabilidad

Medidas Estadísticas: Variabilidad

Tipificación o Estandarización

Se conoce por tipificación al proceso de restar la media y dividir por su Desviación estándar a una variable X. De este modo se obtiene una nueva variable

$$Z = \frac{X - \overline{x}}{S}$$

donde la media de Z = 0 y la desviación estándar o típica de Z = 1, lo que denominamos variable tipificada.

Naturales y Exactas | YESTADÍSTICA

Medidas Estadísticas: *Posición*

Los Medidas de Posición van a ser valores de la variable caracterizados por superar a cierto porcentaje de observaciones en la población (o muestra). Tenemos fundamentalmente a los **percentiles** (P_k) como medidas de posición, y asociados a ellos veremos también:

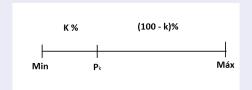
- \blacksquare cuartiles (O_k)
- \blacksquare quintiles (K_k)
- \blacksquare deciles (D_k)

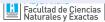
Medidas de Posición

Medidas Estadísticas: *Posición*

Percentiles

Para una variable discreta, se define el percentil de orden k, como la observación, P_k , que deja por debajo de si el k % de la población.





Medidas de Posición

Medidas Estadísticas: *Posición*

Percentiles

Sean $x_{(1)},...,x_{(n)}$ una muestra de tamaño n, ordenada de forma creciente, entonces para determinar el percentil k-ésimo P_k seguimos los siguientes pasos:

- Se determina la posición: $P = \frac{(n-1)k}{100} + 1$
- 2 Se buscan los datos X_i y X_i , tal que $X_i \leq P \leq X_i$.
- 3 Se calcula la distancia entre estos datos, $d = X_i X_i$.
- 4 Se multiplica la parte decimal de P por d.
- 5 El resultado anterior se le suma al dato X_i .

Medidas Estadísticas: *Posición*

Percentiles

En el caso de una variable continua, el intervalo donde se encuentra $P_k \in (L_{i-1}, L_i]$, se calcula buscando el que deja debajo de si al k % de las observaciones.

$$P_k = L_{i-1} + \left(\frac{n\frac{k}{100} - N_{i-1}}{n_i}\right) \cdot a_i$$

Medidas de Posición

Medidas Estadísticas: *Posición*

Cuartiles

Los cuartiles, Q_l , son un caso particular de los percentiles. Hay 3, y se definen como:

$$Q_1 = P_{25}$$

$$Q_1 = P_{25}$$

$$Q_2 = P_{50} = \widetilde{X}$$

$$Q_3 = P_{75}$$

Medidas Estadísticas: *Posición*

Deciles

Se definen los deciles como los valores de la variable que dividen a las observaciones en 10 grupos de igual tamaño, más precisamente definimos $D_1, D_2, ..., D_9$ como:

$$D_i = P_{10 \cdot i}$$

$$i = 1, ..., 9$$

Medidas de Posición

Medidas Estadísticas: *Posición*

Ouintiles

Se definen los quintiles como los valores de la variable que dividen a las observaciones en 5 grupos de igual tamaño, más precisamente definimos $K_1, K_2, ..., K_4$ como:

$$K_i = P_{20 \cdot i}$$
 $i = 1, ..., 4$

•000000000

Medidas de Forma

Medidas Estadísticas: Forma

Simetría: Las medidas de asimetría son indicadores que permiten

establecer el grado de simetría (o asimetría) que presenta

una distribución con respecto a un eje.

Curtosis: La curtosis es una medida estadística que determina el grado de concentración que presentan los valores de una variable alrededor de la zona central de la distribución de frecuencias. También es conocida como medida de

apuntamiento.

Medidas Estadísticas: Forma

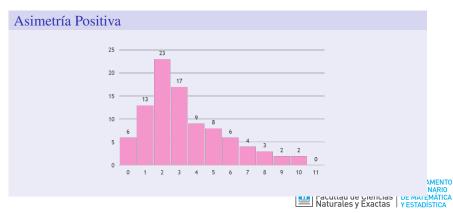
Simetría

Una distribución es simétrica cuando a la derecha y a la izquierda de la media existe el mismo número de valores, equidistantes dos a dos de la media, y además con la misma frecuencia. Una distribución es Simétrica si:

$$\overline{X} = \widetilde{X} = \mathring{X}$$

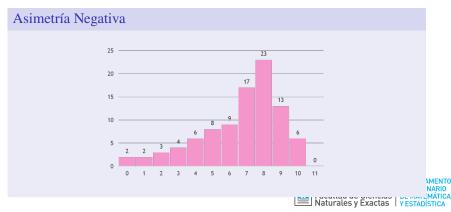
En caso contrario, decimos que la distribución es Asimétrica, y entonces puede ser de dos tipos:

Medidas Estadísticas: Forma



Medidas de Forma

Medidas Estadísticas: Forma



Medidas Estadísticas: Forma

Coeficientes de Asimetría de Bowley

Se basa en las distancias entre los cuartiles a fin de establecer un resumen de la asimetría de la distribución. La fórmula es la siguiente:

$$AsB = \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$$

- Si $AsB < 0 \rightarrow$ Asimetría Negativa
- Si $AsB = 0 \rightarrow Simetría$
- Si $AsB > 0 \rightarrow Asimetría Positiva$

MÁTICA

Medidas Estadísticas: Forma

Coeficientes de Asimetría de Pearson

El coeficiente de asimetría de Pearson mide la diferencia entre la media y la moda respecto a la dispersión del conjunto. La fórmula es la siguiente:

$$AsP = \frac{\overline{X} - \mathring{X}}{S}$$

- Si $AsP < 0 \rightarrow$ Asimetría Negativa
- Si $AsP = 0 \rightarrow Simetría$
- Si $AsP > 0 \rightarrow$ Asimetría Positiva

AMENTO NARIO MÁTICA ÍSTICA

Medidas de Forma

Medidas Estadísticas: Forma

Coeficientes de Asimetría de Fisher

El coeficiente de asimetría de Fisher evalúa la proximidad de los datos a su media. La fórmula de la asimetría de Fisher es:

$$AsF = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3}{S^3}$$

- Si $AsF < 0 \rightarrow$ Asimetría Negativa
- Si $AsF = 0 \rightarrow Simetría$
- Si AsF > 0 → Asimetría Positiva

AMENTO MÁTICA STICA

Medidas Estadísticas: Forma

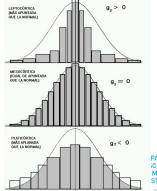
Curtosis

La Curtosis expresa el grado de apuntamiento que presenta la distribución en comparación con la Distribución Normal y se agrupan en 3 grandes categorías de apuntamiento:

- Platicúrtica
- Mesocúrtica
- Leptocúrtica

Medidas Estadísticas: Forma

- Distribución Leptocúrtica: indica que en las colas hay menos casos acumulados que en las colas de la distribución Normal.
- Distribución Mesocúrtica: como en la distribución normal.
- Distribución Platicúrtica: indica que en las colas hay más casos acumulados que en las colas de la distribución Normal



PARTAMENTO MATEMÁTICA STADÍSTICA

Medidas de Forma

Medidas Estadísticas: Forma

Coeficientes de Curtosis de Fisher

$$CcF = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4}{S^4} - 3$$

- Si $CcF < 0 \rightarrow Platicúrtica$
- Si $CcF = 0 \rightarrow Mesocúrtica$
- Si $CcF > 0 \rightarrow$ Leptocúrtica

MÁTICA Naturales y Exactas | Y ESTADÍSTICA

