



Números Reales 6 CPM 1411

2023

REFERENCIAS BIBLIOGRÁFICAS

- 1.- Capítulo Números Reales. Apuntes de Cálculo. USM. Gruenberg, V.(2016).
- 2.- Capítulo Números Reales. Matemática para ingeniería Arancibia S., Mena J. (2015).

Axioma del Supremo

Definición Sea $A \subseteq \mathbb{R}$ tal que $A \neq \phi$ y $c \in \mathbb{R}$. Se dice que

1. c es una cota superior de A, si y sólo si

$$(\forall a \in A)(a \le c).$$

2. a es una cota inferior de A, si y sólo si

$$(\forall a \in A)(a \ge c).$$

- 3. A es un conjunto acotado superiormente, si y sólo si existe una cota superior para el conjunto A.
- 4. A es un conjunto acotado inferiormente, si y sólo si existe una cota inferior para el conjunto A.
- 5. A es un conjunto acotado, si y sólo si A es acotado superior e inferiormente

Observación:

Si $A = \emptyset$, se dice que A es un conjunto acotado.

Definición Sea $A \subseteq \mathbb{R}$ tal que $A \neq \phi$ y $L \in \mathbb{R}$.

Se dice que L es el supremo de A, si y sólo si, las dos condiciones siguientes se satisfacen:

- 1. L es una cota superior de A.
- 2. Si L' es una cota superior de A, entonces $L \leq L'$.

Notación:

el supremo se denota por $\sup(A) = L$.

Definición Sean $A \subseteq \mathbb{R}$ tal que $A \neq \phi$ y $L \in \mathbb{R}$.

Se dice que L es el ínfimo de A, si y sólo si, las dos condiciones siguientes se satisfacen:

- 1. L es una cota inferior de A.
- 2. Si L' es una cota inferior de A, entonces $L' \leq L$.

Notación: el ínfimo, se denota por inf(A) = L.

Ejemplo Sea $A = \{x \in \mathbb{R} \mid |x-3| \le \sqrt{2}\}$. Determine el conjunto de cotas superiores e inferiores del conjunto A.

Notemos que

$$A = \{x \in \mathbb{R} \mid |x - 3| \le \sqrt{2}\}$$

$$= \{x \in \mathbb{R} \mid -\sqrt{2} \le x - 3 \le \sqrt{2}\}$$

$$= \{x \in \mathbb{R} \mid -\sqrt{2} + 3 \le x \le \sqrt{2} + 3\}$$

$$= [-\sqrt{2} + 3, \sqrt{2} + 3].$$

De acuerdo a esto podemos ver que A es un conjunto acotado superior e inferiormente pues existen $r = \sqrt{2} + 3$ y $r' = -\sqrt{2} + 3$ de modo que $r' \le a \le r$ para todo $a \in A$. Además el conjunto de todas las cotas inferiores está dado por $]-\infty, -\sqrt{2} + 3]$ y el de las cotas superiores está dado por $[\sqrt{2} + 3, \infty[$.

Teorema Sean $A \subseteq \mathbb{R}$ un conjunto no vacío y $L \in \mathbb{R}$ cota superior de A. Entonces, $L = \sup(A) \ si \ y \ s\'olo \ si \ (\forall \epsilon > 0) (\exists \ x \in A)(x > L - \epsilon).$

Teorema Sean $A \subseteq \mathbb{R}$ un conjunto no vacío y $L \in \mathbb{R}$ cota inferior de A. Entonces, $L = \inf(A) \text{ si y sólo si } (\forall \epsilon > 0) (\exists x \in A)(x < L + \epsilon).$

El conjunto de los números reales con el axioma del supremo recibe el nombre de cuerpo ordenado y completo, o cuerpo totalmente ordenado lo cual caracteriza \mathbb{R} .

Axioma Si $\phi \neq A \subseteq \mathbb{R}$ es acotado superiormente, entonces el supremo de A existe y es un elemento de \mathbb{R} .

Propiedad El conjunto de los números naturales \mathbb{N} no es acotado.

Demostración: Supongamos por absurdo que \mathbb{N} es acotado superiormente. Luego por el axioma del supremo existe $\sup(\mathbb{N}) = L, L \in \mathbb{R}$, esto es $(\forall \epsilon > 0)(\exists n \in \mathbb{N})(n > L - \epsilon)$ En particular si consideramos $\epsilon = 1 > 0$, entonces existe $n \in \mathbb{N}$ tal que

$$n > L - 1$$

es decir,

$$n+1>L$$

pero $n+1 \in \mathbb{N}$, lo que es una contradicción pues $L = \sup(\mathbb{N})$.

Teorema (Propiedad arquimediana)

$$(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(x < n).$$

Demostración: Procedamos por absurdo, esto es

$$(\exists x \in \mathbb{R})(\forall n \in \mathbb{N})(x \ge n).$$

Es claro que x es una cota superior de \mathbb{N} , luego tenemos que \mathbb{N} es acotado superiormente, lo cual es una contradicción.

Corolario

La propiedad arquimediana la podemos expresar de manera equivalente como sigue

$$(\forall \epsilon > 0)(\exists n \in \mathbb{N}) \left(\frac{1}{n} < \epsilon\right).$$

Demostración: Sea $\epsilon > 0$ y consideremos el número real $\frac{1}{\epsilon}$, entonces por la propiedad arquimediana existe $n \in \mathbb{N}$ tal que

$$n > \frac{1}{\epsilon}$$

de donde

$$\frac{1}{n} < \epsilon$$

concluyendo así la demostración.

Ejemplo Sea
$$A = \left\{ x_n \in \mathbb{R} \mid x_n = \frac{n}{2n+1}, n \in \mathbb{N} \right\}$$
 Demostrar que $\sup(A) = \frac{1}{2}$.

1. En primer lugar demostremos que $L = \frac{1}{2}$ es una cota superior de A. Claramente

$$2n < 2n + 1 \quad \forall n \in \mathbb{N}$$

luego

$$\frac{2n}{2n+1} < 1 \quad \forall n \in \mathbb{N}$$

$$\Leftrightarrow \frac{n}{2n+1} < \frac{1}{2} \quad \forall n \in \mathbb{N}$$

así

$$x_n < \frac{1}{2} \quad \forall n \in \mathbb{N}$$

con lo cual se tiene que $L = \frac{1}{2}$ es cota superior de A.

2. Solo nos queda demostrar que $(\forall \epsilon > 0)(\exists x_n \in A)(x_n > \frac{1}{2} - \epsilon)$, lo que equivale a probar la existencia de $n \in \mathbb{N}$ de modo que

$$\frac{n}{2n+1} > \frac{1}{2} - \epsilon, \quad \forall \epsilon > 0.$$

Sea $\epsilon > 0$ y consideremos el número real $\frac{1-2\epsilon}{4\epsilon}$, ahora bien por Teorema tenemos que existe $n \in \mathbb{N}$ tal que

$$n > \frac{1-2\epsilon}{4\epsilon}$$

$$\Leftrightarrow 4n\epsilon > 1-2\epsilon$$

$$\Leftrightarrow 2n\epsilon > \frac{1}{2}-\epsilon$$

$$\Leftrightarrow n > n-2n\epsilon + \frac{1}{2}-\epsilon$$

$$\Leftrightarrow n > 2n\left(\frac{1}{2}-\epsilon\right) + \frac{1}{2}-\epsilon$$

$$\Leftrightarrow n > (2n+1)\left(\frac{1}{2}-\epsilon\right)$$

$$\Leftrightarrow \frac{n}{2n+1} > \frac{1}{2}-\epsilon .$$

Así

$$(\forall \epsilon > 0) \left(\exists x_n = \frac{n}{2n+1} \in A \right) \left(x_n > \frac{1}{2} - \epsilon \right).$$

Luego

$$\sup(A) = \frac{1}{2}.$$

Ejemplo Sea
$$A = \left\{ x_n \in \mathbb{R} \mid x_n = \frac{1}{n}, \ n \in \mathbb{N} \right\}$$
 Demostrar que $\inf(A) = 0$.

1. En primer lugar demostremos que L=0 es una cota inferior de A.

Es evidente que

$$0 < \frac{1}{n} \quad \forall n \in \mathbb{N}$$

luego

$$0 < x_n \quad \forall n \in \mathbb{N}$$

con lo cual se tiene que L=0 es cota inferior de A.

2. Solo nos queda demostrar que $(\forall \epsilon > 0)(\exists x_n \in A)(x_n < \epsilon)$, este hecho es clara consecuencia del Corolario

$$(\forall \epsilon > 0) \left(\exists x_n = \frac{1}{n} \in A \right) (x_n < \epsilon).$$

luego

$$\inf(A) = 0.$$

Teorema Sean $x, y \in \mathbb{R}$ tal que x < y. Entonces, existe $p \in \mathbb{Q}$ tal que x .

Demostración: Sean $x, y \in \mathbb{R}$. Claramente si x < 0 < y existe $p = 0 \in \mathbb{Q}$ tal que x y el teorema queda demostrado en este caso.

Supongamos ahora que 0 < x < y. Sea

$$\epsilon = y - x > 0$$

luego por la corolario de propiedad arquimediana tenemos

$$\frac{1}{n} < \epsilon = y - x$$

Dado $nx \in \mathbb{R}$, nuevamente por la propiedad arquimediana, existe $m \in \mathbb{N}$ tal que

$$m > nx$$
.

Sea m el mínimo que satisface m > nx, luego

$$m-1 \le nx$$

así tenemos

$$x < \frac{m}{n} = \frac{m-1}{n} + \frac{1}{n} < x + (y-x) = y.$$

Por lo tanto

$$x < \frac{m}{n} < y,$$

es decir, existe $p = \frac{m}{n} \in \mathbb{Q}$ tal que x .

Por otra parte. Supongamos que x < y < 0, entonces 0 < -y < -x y por lo anterior existe $p \in \mathbb{Q}$ tal que

$$-y .$$

Luego

$$x < -p < y$$

y como $-p \in \mathbb{Q}$ queda completa la demostración.

Definición Un subconjunto $X \subset \mathbb{R}$ es denso en \mathbb{R} si y sólo si entre dos números reales cualesquiera existe algún elemento de X.

Observación: De acuerdo al teorema y definición anteriores claramente el conjunto \mathbb{Q} de los números racionales es denso en \mathbb{R} .

