



División Sintética (Regla de Ruffini)

La división sintética es un método que permite dividir un polinomio de la forma $p(x) = a_n x^n + \dots + a_1 x + a_0$ por otro polinomio de la forma q(x) = x - c. Este método consiste en la construcción de la siguiente tabla:

que se "rellena"

donde los números $b_0, b_1, \ldots, b_{n-2}$ y r vienen dados por:

$$b_{n-2} = a_{n-1} + ca_n$$

$$b_{n-3} = a_{n-2} + cb_{n-2}$$

$$\vdots \quad \vdots \quad \vdots$$

$$b_0 = a_1 + cb_1$$

$$r = a_0 + cb_0$$

EJEMPLO:

1. Dividir $(3x^3 - 4x + 2)$ por (x + 3), indicando cuál es el cuociente y el resto.

Solución:

Luego el cuociente es $q(x) = 3x^2 - 9x + 23$ y el resto es r(x) = -67. Notar que

$$3x^3 - 4x + 2 = (3x^2 - 9x + 23)(x+3) + (-67)$$

Teorema del Resto

Sea $p(x) \in \mathbb{K}[x]$, $a \in \mathbb{K}$. El resto de dividir el polinomio p(x) por d(x) = x - a es p(a).

 $\begin{array}{lll} \text{Dem.:} & \text{Debemos probar que} & p(x) = (x-a)q(x) + p(a). \\ & \text{Por el algoritmo de la división:} & p(x) = (x-a)q(x) + r(x), & \text{con} & gr(r) < gr(x-a) = 1. \\ & \therefore & gr(r) = 0 \ \lor \ r(x) = 0. & \text{Luego,} & r(x) = cte. & \text{Evaluando } p \text{ en } a: \ p(a) = r(a) = r(x). \\ & \text{Luego:} & p(x) = (x-a)q(x) + p(a). \end{array}$

EJEMPLO:

Sea
$$p(x) = 4x^4 + 10x^3 + 19x + 5$$
. Hallar $p(-3)$.

Solución: Es posible evaluar directamente, pero es tedioso. Al hacer la división sintética, se obtiene resto igual a -2. Luego, p(-3) = -2.

División Sintética (Regla de Ruffini)

Teorema del Factor

Un polinomio p(x) es divisible por d(x) = x - a si y sólo si p(a) = 0.

Dem:

 \Rightarrow p(x) es divisible por x-a \Rightarrow r(x)=0 \Rightarrow p(x)=(x-a)q(x) \therefore a es raíz de p(x).

 \sqsubseteq Si a es raíz de p(x): \Rightarrow p(x) = (x-a)q(x) \therefore p(x) es divisible por x-a.

EJEMPLO

Sea $p(x) = x^5 - 10x^3 + 7x + 6$. ¿Es x - 3 un factor de p(x)?

Solución: Al dividir p(x) por x-3, obtenemos resto =0, de donde x-3 es un factor de p(x).

EJERCICIOS:

- 1. ¿Cual es el resto de dividir $x^{100} x + 2$ por $x^2 1$?
- 2. Sea $p(x) = x^4 + bx^3 13x^2 14x + 24$.
 - a) Determinar $b \in \mathbb{R}$ de modo que -2 sea raíz de p(x).
 - b) Determinar las otras raíces del polinomio encontrado en a).
- En cada una de las siguientes ecuaciones compruebe, por división sintética, que el valor indicado para x₀ es raíz de la ecuación, y determine las otras raíces reales, si es que existen.

a)
$$4x^3 + 3x^2 - 5x - 2 = 0$$
 , $x_0 = 1$.

b)
$$x^3 - 2x^2 - 5x + 6 = 0$$
 , $x_0 = -2$.

c)
$$2x^3 - 11x^2 + 17x - 6 = 0$$
 , $x_0 = 2$.

LOCALIZACIÓN DE RAICES DE POLINOMIOS

TEOREMA

Si $p(x) \in \mathbb{R}[x]$, y $p(a) \cdot p(b) < 0$ entonces existe una raíz real de p entre a y b.

 $p(x) = x^4 + 3x^2 - x - 5$ tiene un cero entre 1 y 2, pues p(1) < 0 y p(2) > 0.

LOCALIZACIÓN DE RAICES DE POLINOMIOS

TEOREMA

Sea
$$p(x) = \sum_{i=0}^{n} a_i x^i$$
, $a_n > 0$, $a_i \in \mathbb{R}$. Si $p(x)$ se divide por $x - r$ usando

división sintética, entonces:

Si $r \ge 0$ y todos los números de la última fila (del cuociente y del resto) son ≥ 0 , entonces todos los ceros α de p(x) satisfacen: $\alpha \le r$.

Si $r \le 0$ y todos los números de la última fila (del cuociente y del resto) se alternan en signo, pudiendo considerarse +0 o -0, entonces todos los ceros α de p(x) satisfacen: $\alpha \ge r$.

EJEMPLO

Encontrar cotas superiores e inferiores en Z para las raíces del polinomio

$$p(x) = x^3 - 4x^2 - 5x - 8.$$

LOCALIZACIÓN DE RAICES DE POLINOMIOS

DEFINICIÓN Sea $p(x) \in \mathbb{R}[x]$, escrito de manera ordenada en orden decreciente por grado. Se dice que hay una *variación de signo* si dos términos consecutivos tienen signo opuesto.

EJEMPLO

Considere
$$p(x) = 5x^8 + 7x^6 - 5x^4 + 2x^3 - 3x - 1$$
. Entonces:
 $p(x)$ tiene variación de signo = 3.

TEOREMA de los signos de Descartes

Sea $p(x) \in \mathbb{R}[x]$.

- i) El número de ceros en R⁺ contados cada uno según su multiplicidad es igual a la variación de signo de p(x) o menor que ésta en un número par.
- ii) El número de ceros en \mathbb{R}^- contados cada uno según su multiplicidad es igual a la variación de signo de p(-x) o menor que ésta en un número par.

LOCALIZACIÓN DE RAICES DE POLINOMIOS

EJEMPLOS: Determine el número posible de raíces reales de los siguientes:

1.
$$p(x) = 5x^8 + 7x^6 - 5x^4 + 2x^3 - 3x - 1$$
.

Las variaciones de signo de p(x) y de p(-x) son ambas iguales a 3. este polinomio de grado 8 tiene:

- 3 ó 1 raíz en ℝ⁺
- 3 ó 1 raíz en R⁻

Así, sabemos que posee al menos 2 raíces en \mathbb{R} , y a lo más 6 raíces en \mathbb{R} . Su factorización tiene al menos un factor irreducible de grado 2.

2.
$$p(x) = 4x^5 + 2x^4 - x^3 + x - 5$$

3.
$$p(x) = x^3 - 2x - 6$$

LOCALIZACIÓN DE RAICES DE POLINOMIOS

TEOREMA Sea $p(x) \in \mathbb{Z}[x]$. Si $\frac{c}{d} \in \mathbb{Q}$ es raíz de p(x), donde c y d no tienen divisores en común, entonces

c divide a a_0 y d divide a a_n

EJEMPLO

Hallar todas las raíces reales de $p(x) = 8x^4 + 30x^3 + 29x^2 - 2x - 30$.

Solución:

- lacksquare Hay una raíz entre 0 y 1. Como var(p(x))=1, hay exactamente una raíz en \mathbb{R}^+ , que es ésta.
- Hay una raíz entre -3 y -2.
- Las posibles raíces racionales son: ±{1, ½, ¼, ½, ···}. Se debe probar, con la información disponible.

Polinomios Irreductibles

DEFINICIÓN

Si $p \in K[x]$ y $gr(p) \ge 2$ se dice que p es reducible (o reductible) en K[x] si es divisible en K[x], es decir, existen $q, h \in K[x]$, con $gr(q) \ge 1$, $gr(h) \ge 1$, tales que p(x) = q(x)h(x). En caso contrario se dice que p es irreducible o primo en K[x].

EJEMPLOS:

- 1. $p(x) = x^2 + 1$ es reducible en $\mathbb{C}[x]$ y es irreducible en $\mathbb{R}[x]$ y en $\mathbb{Q}[x]$.
- 2. Los polinomios de grado 1, $p(x) = a_0 + a_1 x$, son irreducibles o primos en K[x].
- 3. El polinomio $x^4 + 3x^2 + 2 \in \mathbb{Q}[x]$ se puede factorizar como $(x^2 + 1)(x^2 + 2)$. Vemos que no tiene raíces en \mathbb{Q} ni \mathbb{R} , pero es reducible tanto en \mathbb{Q} como en \mathbb{R} .

Polinomios Irreductibles

TEOREMA de Factorización Única

Todo p(x) reducible sobre K puede escribirse como producto en la forma

$$p(x) = ap_1(x) p_2(x) \cdots p_i(x), \qquad 1 \le i \le gr(p(x))$$

donde a es el coeficiente principal de p(x), $p_j(x)$ ($j=1,\cdots,i$) son irreducibles sobre K y cada uno de ellos tiene coeficiente principal igual a 1. Una factorización de este tipo es única, salvo el orden de los factores.

Polinomios Descomposición en Fracciones Parciales

Se dice que una función racional $\frac{P(x)}{O(x)}$ es una fracción propia, si el grado del DEFINICIÓN polinomio P(x) es menor que el grado del polinomio Q(x). En caso contrario, es decir, si el grado de P(x) es mayor o igual al de Q(x), la fracción se llama impropia.

Toda fracción impropia se puede expresar, efectuando la división, como la suma de un polinomio mas una fracción propia. Es decir,

$$\frac{P(x)}{Q(x)} = M(x) + \frac{N_1(x)}{Q(x)}$$
 donde $M(x)$ es un polinomio

Descomposición en Fracciones Parciales

TEOREMA

(Descomposición en fracciones parciales) Cualquier fracción propia $\frac{P(x)}{Q(x)}$ se puede descomponer en la suma de fracciones parciales del siguiente modo:

- Si Q(x) tiene un factor lineal de la forma ax + b, no repetido, entonces la descomposición de $\frac{P(x)}{Q(x)}$ contiene un término de la forma $\frac{A}{ax+b}$, A=cte.
- Si Q(x) tiene un factor lineal de la forma ax+b, repetido k veces, entonces la descomposición de $\frac{P(x)}{Q(x)}$ contiene términos de la forma $\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \cdots + \frac{A_k}{(ax+b)^k}, \quad A_i = \text{cte.},$ $\forall i=1,\cdots,k.$
- Si Q(x) tiene un factor cuadrático irreducible de la forma $ax^2 + bx + c$, no repetido, entonces la descomposición de $\frac{P(x)}{Q(x)}$ contiene un término de la forma $\frac{Ax+B}{ax^2+bx+c}$, A,B=ctes.
- Si Q(x) tiene un factor cuadrático irreducible de la forma $ax^2 + bx + c$, repetido k veces, entonces la descomposición de $\frac{P(x)}{Q(x)}$ contiene términos de la forma

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}, \quad A_i, B_i = \text{ctes.}, \forall i = 1, \dots, k.$$

Polinomios Descomposición en Fracciones Parciales

El denominador Q(x) es un producto de factores lineales distintos.

Esto significa que podemos escribir

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \cdots (a_kx + b_k)$$

en donde no hay factor que se repita. En este caso, existen constantes A_1, \cdots, A_k tal que

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \dots + \frac{A_k}{a_k x + b_k}$$

Descomposición en Fracciones Parciales

EJEMPLO

Descomponer en fracciones parciales $f(x) = \frac{7x+3}{x^2+3x-4}$

Solución El denominador de la función racional se puede descomponer en factores lineales en la forma:

$$x^2 + 3x - 4 = (x+4)(x-1)$$

Luego la descomposición en fracciones parciales es:

$$\frac{7x+3}{x^2+3x-4} = \frac{7x+3}{(x+4)(x-1)} = \frac{A}{x+4} + \frac{B}{x-1}$$

Para encontrar los valores de A y B, multiplicamos la igualdad por (x+4)(x-1), obteniendo

$$7x + 3 = A(x - 1) + B(x + 4)$$

Desarrollando se obtiene el siguiente sistema de ecuaciones:

$$\begin{array}{cccc} A+B & = & 7 \\ -A+4B & = & 3 \end{array} \Rightarrow A=5, B=2$$

Luego, la función original queda:

$$\frac{7x+3}{x^2+3x-4} = \frac{5}{x+4} + \frac{2}{x-1}$$

Descomposición en Fracciones Parciales

Caso 2 El denominador Q(x) es producto de factores lineales, algunos de los cuales se repiten.

Si Q(x) tiene un factor lineal repetido k veces, de la forma $(a_1x + b_1)^k$, entonces la descomposición en fracciones parciales contiene k términos de la forma:

$$\frac{A_1}{a_1x+b_1} + \frac{A_2}{(a_1x+b_1)^2} + \dots + \frac{A_k}{(a_1x+b_1)^k}$$

donde A_1, A_2, \cdots, A_k son constantes.

Descomposición en Fracciones Parciales

EJEMPLO: Descomponer en fracciones parciales

$$f(x) = \frac{5x^2 - 36x + 48}{x(x-4)^2}$$

Solución La descomposición en fracciones parciales es:

$$\frac{5x^2 - 36x + 48}{x(x-4)^2} = \frac{A}{x} + \frac{B}{(x-4)} + \frac{C}{(x-4)^2}$$

Multiplicando ambos miembros de la igualdad por el denominador común

$$5x^2 - 36x + 48 = A(x-4)^2 + Bx(x-4) + Cx$$

se obtiene el sistema:

$$A + B = 5$$
 $-8A - 4B + C = -36$
 $16A = 48$
de donde $A = 3, B = 2, C = -4$

Luego:

$$\frac{5x^2 - 36x + 48}{x(x-4)^2} = \frac{3}{x} + \frac{2}{(x-4)} - \frac{4}{(x-4)^2}$$

Descomposición en Fracciones Parciales

Caso 3 El denominador Q(x) es producto de factores cuadráticos irreducibles distintos.

Si Q(x) tiene un factor cuadrático no repetido de la forma $ax^2 + bx + c$, en donde, $b^2 - 4ac < 0$, entonces la descomposición en fracciones parciales contiene un término de la forma:

$$\frac{Ax + B}{ax^2 + bx + c}$$

donde A y B son constantes.

Descomposición en Fracciones Parciales

EJEMPLO:

Descomponer en fracciones parciales:
$$f(x) = \frac{4x^2 - 8x + 1}{x^3 - x + 6}$$

Tenemos que

$$\frac{4x^2 - 8x + 1}{x^3 - x + 6} = \frac{4x^2 - 8x + 1}{(x+2)(x^2 - 2x + 3)} = \frac{A}{x+2} + \frac{Bx + C}{x^2 - 2x + 3}$$

Multiplicando por el común denominador:

$$4x^2 - 8x + 1 = A(x^2 - 2x + 3) + (Bx + C)(x + 2)$$

obtenemos el sistema

$$\begin{array}{rclcrcl} A+B&=&4\\ -2A+2B+C&=&-8\\ 3A+2C&=&1 \end{array} \qquad \mbox{de donde} \qquad A=3, \quad B=1, \quad C=-4$$

Por lo tanto,

$$\frac{4x^2 - 8x + 1}{x^3 - x + 6} = \frac{3}{x + 2} + \frac{x - 4}{x^2 - 2x + 3}$$

Descomposición en Fracciones Parciales

Caso 4 El denominador Q(x) contiene un factor cuadrático irreducible repetido.

Si Q(x) tiene un factor cuadrático repetido k veces de la forma $(ax^2+bx+c)^k$, donde $b^2-4ac<0$, entonces la descomposición en fracciones parciales contiene k términos de la forma:

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$

donde A_1, A_2, \dots, A_k y $B_1, B_2, \dots B_k$ son constantes.

Descomposición en Fracciones Parciales

EJEMPLO Descomponer en fracciones parciales

$$\frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2}$$

Solución La forma de descomponer esta división de polinimios en fracciones parciales es

$$\frac{1-x+2x^2-x^3}{x(x^2+1)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$

Multiplicando por $x(x^2+1)^2$, y luego igualando coeficientes, se obtiene el siguiente sistema

$$A + B = 0$$
, $C = -1$, $2A + B + D = 2$, $C + E = -1$, $A = 1$

cuya solución es (Ejercicio):

$$A = 1$$
, $B = -1$, $C = -1$, $D = 1$ y $E = 0$

Entonces

$$\frac{1-x+2x^2-x^3}{x(x^2+1)^2} = \frac{1}{x} - \frac{x+1}{x^2+1} + \frac{x}{(x^2+1)^2}$$

Descomponer en fracciones parciales

$$f_2(x) = \frac{x^2 + 11x + 15}{(x-1)(x+2)^2}$$

$$f_4(x) = \frac{3x^3 - 6x^2 + 7x - 2}{(x^2 - 2x + 2)^2}$$

GRACIAS POR SU ATENCIÓN