Módulo 13:

ANILLO DE POLINOMIOS

En este módulo nos referiremos al anillo de polinomios de cualquier cuerpo. En esta estructura se aplican gran parte de las propiedades y teoremas de los capítulos anteriores, destacando uno de los teoremas importantes que hace mención a la extensión a cuerpo, así como otros que nos indican cuando algunos elementos de este anillo son irreducibles, como lo es el criterio de Eisenstein entre otros.

Definición 1: Sea A un anillo, un polinomio f(x) en la indeterminada x, y con coeficientes en A, es la siguiente suma formal infinita.

$$f(x) = a_0 + a_1 \cdot x + \dots + a_n \cdot x^n + \dots = \sum_{i=0}^{\infty} a_i \cdot x^i$$

Con la condición que los $a_i = 0$ salvo para un número finito de valores de i.

Si $a_i = 0$, $\forall i > n$ se anota:

$$f(x) = a_0 + a_1 \cdot x + \dots + a_n \cdot x^n$$

Los $a_i \in A$ son los coeficientes del polinomio

Si $\forall i > 0$ se cumple que $a_i \neq 0$ el mayor valor de i recibe el nombre de grado del polinomio. Si tal i no existe se dice que el polinomio tiene grado 0.

Ejemplo 1:

f(x) = a, con $a \in A$. Luego f(x) tiene grado 0.

Definición 2: Se denota por A[x] al conjunto de los polinomios f(x). En A[x] se define la suma como:

Sean
$$f(x) = a_0 + a_1 \cdot x + ... + a_n \cdot x^n + ...$$

$$g(x) = b_0 + b_1 \cdot x + ... + b_n \cdot x^n + ...$$

Luego
$$f(x) + g(x) = h(x) = d_0 + d_1 \cdot x + ... + d_n \cdot x^n + ...$$

Donde
$$d_n = a_n + b_n$$
, $\forall n$

Observación: (A[x],+) es un grupo abeliano, en efecto:

i) Es cerrada:

Es evidente por definición.

ii) Asociatividad:

Para todo f(x), g(x), $h(x) \in A[x]$ por demostrar que

$$f(x)+[g(x)+h(x)]=[f(x)+g(x)]+h(x)$$

Se tiene que f(x) + [g(x) + h(x)] =

$$= f(x) + \left[b_0 + b_1 \cdot x + \dots + b_n \cdot x^n + \dots + d_0 + d_1 \cdot x + \dots + d_n \cdot x^n + \dots\right]$$

$$= f(x) + \left[(b_0 + d_0) + (b_1 + d_1) \cdot x + \dots + (b_n + d_n) \cdot x^n + \dots \right]$$

donde $u_i = b_i + d_i$, $\forall i$, luego:

$$f(x)+(u_0+u_1\cdot x+...+u_n\cdot x^n+...)=v_0+v_1\cdot x+v_2\cdot x^2+...+v_n\cdot x^n+...$$

$$con v_i = a_i + u_i , \forall i$$

$$= [a_0 + (b_0 + d_0)] + [a_1 + (b_1 + d_1)] \cdot x + \dots + [a_n + (b_n + d_n)] \cdot x_n + \dots$$

$$= [(a_0 + b_0) + d_0] + [(a_1 + b_1) + d_1] \cdot x + \dots + [(a_n + b_n) + d_n] \cdot x^n + \dots$$

$$= (f(x) + g(x)) + h(x)$$

iii) Conmutatividad:

Para todo f(x), $g(x) \in A[x]$ por demostrar que:

$$f(x) + g(x) = g(x) + f(x)$$

Se tiene que:

$$f(x) + g(x) = a_0 + a_1 \cdot x + \dots + a_n \cdot x^n + \dots + b_0 + b_1 \cdot x + \dots + b_n \cdot x^n + \dots$$

$$= (a_0 + b_0) + (a_1 + b_1) \cdot x + \dots + (a_n + b_n) \cdot x^n + \dots$$

$$con \ a_0 \ , b_0 \ , \ a_1 \ , b_1 \ , a_n \ , b_n \in A$$

$$= (b_0 + a_0) + (b_1 + a_1) \cdot x + \dots + (b_n + a_n) \cdot x^n + \dots$$

$$= b_0 + b_1 \cdot x + \dots + b_n \cdot x^n + \dots + a_0 + a_1 \cdot x + \dots + a_n \cdot x^n + \dots$$

$$=g(x)+f(x)$$

Debe existir $f(x) \in A[x]$ para todo $g(x) \in A[x]$ tal que

$$f(x)+g(x)=g(x)+f(x)=g(x)$$

Supongamos que:

iii) Elemento Neutro.

$$f(x)+g(x)=g(x)$$
, luego se cumple que:

$$a_0 + a_1 \cdot x + \dots + a_n \cdot x^n + b_0 + b_1 \cdot x + \dots + b_n \cdot x^n = b_0 + b_1 \cdot x + \dots + b_n \cdot x^n + \dots$$

Como a_i , $b_i \in A$, $\forall i$, luego $a_0 + a_1 \cdot x + ... + a_n \cdot x^n + ... = 0$, por lo tanto el neutro en A[x] es $f(x) = 0 = 0 + 0 \cdot x + 0 \cdot x^2 + ... + 0 \cdot x^n + ...$

iv) Elemento Inverso

Para todo $f(x) \in A[x]$ debe existir $g(x) \in A[x]$ tal que

$$f(x)+g(x)=g(x)+f(x)=0$$

Supongamos que:

$$f(x)+g(x)=0$$
, esto es:

$$a_0 + a_1 \cdot x + \dots + a_n \cdot x^n + \dots + b_0 + b_1 \cdot x + \dots + b_n \cdot x^n = 0$$
, es decir,

$$\sum_{i=0}^{\infty} a_i \cdot x^i + \sum_{j=0}^{\infty} b_j \cdot x^j = 0 \text{, con } a_i, b_j \in A, \forall i, j$$

Luego sumando el inverso aditivo de $\sum_{i=0}^{\infty} a_i \cdot x^i$ por la izquierda se tiene:

$$-\sum_{i=0}^{\infty} a_i \cdot x^i + \sum_{i=0}^{\infty} a_i \cdot x^i + \sum_{j=0}^{\infty} b_j \cdot x^j = -\sum_{i=0}^{\infty} a_i \cdot x^i$$
$$\sum_{i=0}^{\infty} b_j \cdot x^j = -\sum_{i=0}^{\infty} a_i \cdot x^i$$

En consecuencia, g(x) = -f(x), ahora si $f(x) = \sum_{i=0}^{\infty} a_i \cdot x^i$ entonces su

inverso es
$$-f(x) = \sum_{i=0}^{\infty} (-a_i) \cdot x^i$$
.

En consecuencia de i), ii), iii), iv) y v) A[x] es grupo abeliano.

Definición 3: En A[x] se define el producto como:

Sean
$$f(x) = \sum_{i=0}^{\infty} a_i \cdot x^i$$
; $g(x) = \sum_{j=0}^{\infty} b_j \cdot x^j$, luego
$$f(x) \cdot g(x) = \sum_{k=0}^{\infty} d_k \cdot x^k$$
, con $d_k = \sum_{r=0}^{k} a_r \cdot b_{k-r}$

$$f(x) \cdot g(x) = \sum_{k=0}^{\infty} d_k \cdot x^k$$
, con $d_k = \sum_{r=0}^{k} a_r \cdot b_{k-r}$

Ejemplo 2:

Sean
$$f(x) = 2 \cdot x^3 + 4 \cdot x^2 - 5 = a_3 \cdot x^3 + a_2 \cdot x^2 - a_0$$

$$g(x) = 6 \cdot x^2 + x$$
 $= b_2 \cdot x^2 + b_1 \cdot x$

Luego
$$f(x) \cdot g(x) = (2 \cdot x^3 + 4 \cdot x^2 - 5) \cdot (6 \cdot x^2 + x)$$

$$=12 \cdot x^5 + 2 \cdot x^4 + 24 \cdot x^4 + 4 \cdot x^3 - 30 \cdot x^2 - 5x$$

$$= 12 \cdot x^5 + 26 \cdot x^4 + 4 \cdot x^3 - 30 \cdot x^2 - 5 \cdot x$$

Tenemos que: $f(x) \cdot g(x) = d_0 + d_1 \cdot x + d_2 \cdot x^2 + d_3 \cdot x^3 + d_4 \cdot x^4 + d_5 \cdot x^5$

Ahora,
$$d_5 = \sum_{r=0}^{5} a_r \cdot b_{5-r} = a_0 \cdot b_5 + a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1 + a_5 \cdot b_0$$

$$=(-5)\cdot 0 + 0\cdot 0 + 4\cdot 0 + 2\cdot 6 + 0\cdot 1 + 0\cdot 0 = 12$$

$$d_4 = \sum_{n=0}^4 a_r \cdot b_{4-r} = \underbrace{a_0 \cdot b_4^0}_{4} + \underbrace{a_1 \cdot b_3^0}_{3} + a_2 \cdot b_2 + a_3 \cdot b_1 + \underbrace{a_4 \cdot b_0^0}_{0}$$

$$=4\cdot 6+2\cdot 1=26$$

$$d_3 = \sum_{r=0}^{3} a_r \cdot b_{3-r} = a_0 \cdot b_3^0 + a_1 \cdot b_2^0 + a_2 \cdot b_1 + a_3 \cdot b_0^0$$

$$=4 \cdot 1 = 4$$

$$d_2 = \sum_{r=0}^{2} a_r \cdot b_{2-r} = a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0$$

$$= (-5) \cdot 6 = -30$$

$$d_1 = \sum_{r=0}^{1} a_r \cdot b_{1-r} = a_0 \cdot b_1 + a_1 \cdot b_0$$

$$= -5$$

$$d_0 = \sum_{r=0}^{0} a_r \cdot b_{0-r} = a_0 \cdot b_0$$

$$= 0$$

Por lo tanto
$$f(x) \cdot g(x) = \sum_{k=0}^{\infty} d_k \cdot x^k = 12 \cdot x^5 + 26 \cdot x^4 + 4 \cdot x^3 - 30 \cdot x^2 - 5 \cdot x$$

Nota: Anotaremos por gr al grado de un polinomio.

Del ejemplo anterior podemos decir:

$$gr(f(x)\cdot g(x)) = 5 = 3 + 2 = gr(f(x)) + gr(g(x))$$

es válido
$$\forall f(x), g(x) \in A[x] \text{con } f(x), g(x) \neq 0$$

Por otro lado podemos decir que:

$$gr(f(x)+g(x)) \le \max (gr(g(x)), gr(f(x)))$$

Observación: $(A[x],+,\cdot)$ es un anillo, en efecto:

De lo anterior podemos decir que (A[x],+)es Grupo Abeliano.

Ahora solo basta demostrar la asociatividad con la segunda operación y la distributividad de la segunda operación con respecto a la primera, esto es:

i) Asociatividad:

Para todo f(x), g(x), $h(x) \in A[x]$ por demostrar que:

$$f(x) \cdot [g(x) \cdot h(x)] = [f(x) \cdot g(x)] \cdot h(x)$$

$$\begin{split} & \left[\left(\sum_{i=0}^{\infty} a_i \cdot x^i \right) \left(\sum_{j=0}^{\infty} b_j \cdot x^j \right) \right] \left(\sum_{k=0}^{\infty} c_k \cdot x^k \right) = \left(\sum_{i=0}^{\infty} a_i \cdot x^i \right) \left[\left(\sum_{j=0}^{\infty} b_j \cdot x^j \right) \left(\sum_{k=0}^{\infty} c_k \cdot x^k \right) \right] \\ & = \left(\sum_{i=0}^{\infty} a_i \cdot x^i \right) \cdot \left(\sum_{n=0}^{\infty} \left(\sum_{r=0}^{n} b_r \cdot c_{n-r} \right) \cdot x^n \right) \\ & = \sum_{s=0}^{\infty} \left(\sum_{n=0}^{s} a_{s-n} \left(\sum_{r=0}^{n} b_r \cdot c_{n-r} \right) \right) \cdot x^s \\ & = \sum_{s=0}^{\infty} \left(\sum_{i+j+k=s} a_i \cdot b_j \cdot c_k \right) \cdot x^s \\ & = \sum_{s=0}^{\infty} \left[\sum_{n=0}^{s} \left(\sum_{i=0}^{n} a_i \cdot b_{n-i} \right) \cdot c_{s-n} \right] \cdot x^s \\ & = \left[\sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} a_i \cdot b_{n-i} \right) \cdot x^n \right] \left(\sum_{k=0}^{\infty} c_k \cdot x^k \right) \\ & = \left[\left(\sum_{i=0}^{\infty} a_i \cdot x^i \right) \left(\sum_{j=0}^{\infty} b_j \cdot x^j \right) \right] \left(\sum_{k=0}^{\infty} c_k \cdot x^k \right) \end{split}$$

ii) Distributividad:

La distributividad se demuestra de manera análoga y queda de ejercicio para el lector.

Observación: De lo anterior podemos decir que $(A[x],+,\cdot)$ es un anillo de polinomios.

Proposiciones: Sea $(A[x],+,\cdot)$ un anillo de polinomios, luego se tiene:

- 1.- Si A es un anillo conmutativo entonces A[x] es conmutativo.
- 2.- Si la identidad de A es 1 entonces la identidad de A[x] es f(x)=1.
- 3.- Si A es un Dominio de Integridad entonces A[x] es un Dominio de Integridad.

Demostración 1)

Dados f(x), $g(x) \in A[x]$ por demostrar que $f(x) \cdot g(x) = g(x) \cdot f(x)$

Se tiene: $f(x) = a_0 + a_1 \cdot x + ... + a_n \cdot x^n + ...$ y $g(x) = b_0 + b_1 \cdot x + ... + b_m \cdot x^m$

Luego, $f(x) \cdot g(x) = c_0 + c_1 \cdot x + ... + c_s \cdot x^s + ...$

 $g(x) \cdot f(x) = d_0 + d_1 \cdot x + ... + d_s \cdot x^s + ...$, con s = m + n, pero todo

 $0 \le i \le s$, obtenemos: $c_i = \sum_{k=1}^{\infty} a_k \cdot b_j$

 $= \sum_{i+k-j}^{\infty} b_j \cdot a_k$

 $=d_i$

Luego $f(x) \cdot g(x) = g(x) \cdot f(x)$ por tener todos sus coeficientes iguales.

Demostración 2):

Jniversidad de

Debe existir $g(x) \in A[x]$ para todo $f(x) \in A[x]$ tal que

$$f(x) \cdot g(x) = g(x) \cdot f(x) = f(x)$$

Supongamos que $f(x) \cdot g(x) = f(x)$, luego se tiene que:

$$\left(\sum_{i=0}^{\infty} a_i \cdot x^i\right) \cdot \left(\sum_{j=0}^{\infty} b_j \cdot x^j\right) = \left(\sum_{i=0}^{\infty} a_i \cdot x^i\right)$$

Como
$$f(x) \cdot g(x) = \sum_{k=0}^{\infty} d_k \cdot x^k$$
, con $d_k = \sum_{r=0}^{k} a_r \cdot b_{k-r}$, entonces,

$$\sum_{k=0}^{\infty} d_k \cdot x^k = \sum_{i=0}^{\infty} a_i \cdot x^i, \text{ esto es:}$$

$$d_0 + d_1 \cdot x + d_2 \cdot x^2 + \dots + d_n \cdot x^n + \dots = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n + \dots$$

En consecuencia;

$$(a_0 \cdot b_0) + (a_0 \cdot b_1 + a_1 \cdot b_0) \cdot x + (a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0)x^2 + \dots +$$

$$+ \left(\sum_{r=0}^{n} a_r \cdot b_{n-r}\right) \cdot x^n + \dots = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n + \dots$$

Por igualdad de polinomios se obtiene:

$$a_0 \cdot b_0 = a_0$$
, luego $b_0 = 1$

$$a_0 \cdot b_1 + a_1 \cdot b_0 = a_1$$
, como $b_0 = 1$ se tiene

$$a_0 \cdot b_1 + a_1 = a_1$$
 entonces $a_0 \cdot b_1 = 0$, luego $b_1 = 0$

$$a_0 \cdot b_2 + a_1 \cdot b_1 + a_2 \cdot b_0$$
, como $b_0 = 1$ y $b_1 = 0$ obtenemos

$$a_0 \cdot b_2 + a_2 = a_2$$
 entonces $a_0 \cdot b_2 = 0$, luego $b_2 = 0$

Ahora siguiendo análogamente el algoritmo podemos inducir que los demás coeficientes del polinomio g(x) son cero.

Por lo tanto
$$g(x) = 1 + 0 \cdot x + 0 \cdot x^2 + ... + 0 \cdot x^n + ... = 1$$
, identidad en $A[x]$.

Demostración 3):

Solo basta demostrar que A[x] es sin divisores de cero, es decir si:

Si
$$f(x) \cdot g(x) = 0$$
 entonces $f(x) = 0$ ó $g(x) = 0$
o bien, si $f(x) \neq 0$ y $g(x) \neq 0$ entonces $f(x) \cdot g(x) \neq 0$

Sean:

$$f(x) = a_0 + a_1 \cdot x + ... + a_n \cdot x^n$$
, supongamos que $a_n \neq 0$, $a_i = 0$, $\forall i > n$
$$g(x) = b_0 + b_1 \cdot x + ... + b_m \cdot x^m$$
, supongamos que $b_m \neq 0$, $b_j = 0$, $\forall j > m$ Debemos demostrar $f(x) \cdot g(x) \neq 0$, luego tenemos;

Si
$$f(x) \cdot g(x) = h(x) = \sum_{i=0}^{n+m} c_i \cdot x^i$$
 por demostrar que $c_i \neq 0, \forall i$

Esto es,

$$c_{n+m} = \sum_{r=0}^{n+m} a_r \cdot b_{n+m-r} = \underbrace{a_0 \cdot b_{n+m}}^0 + \underbrace{a_1 \cdot b_{n+m-1}}^0 + \underbrace{a_2 \cdot b_{n+m-2}}^0 + \dots + \underbrace{a_n \cdot b_m}^0 + \underbrace{a_{n+m-1}}^0 + \dots + \underbrace{a_{n+m-1}}^0 + \underbrace{a_{n+m-1}}^0 + \dots + \underbrace{a_{n+m-1}}^0 + \underbrace{a_{n+m-1}}^0 + \dots + \underbrace{a_{n+m-1}}^0 +$$

pero $a_n \cdot b_m \neq 0$, pues $a_n \neq 0$ y $b_m \neq 0$, con a_n , $b_m \in A$ Dominio de Integridad, por lo tanto $c_{n+m} \neq 0$, luego A[x] es sin divisores de cero.

Teorema: Sean F y K dos cuerpos tal que F subcuerpo de K, con $\alpha \in K$, entonces la función: $\phi_{\alpha}: F[x] \to K$ tal que $\phi_{\alpha}(f(x)) = f(\alpha)$ es un homomorfismo.

Demostración:

Considerando
$$f(x) = a_0 + a_1 \cdot x + ... + a_n \cdot x^n$$
, luego
$$\phi_{\alpha}(f(x)) = f(\alpha) = a_0 + a_1 \cdot \alpha + ... + a_n \cdot \alpha^n$$

Debemos demostrar que: i) $\phi_{\alpha}(f(x)+g(x)) = \phi_{\alpha}(f(x))+\phi_{\alpha}(g(x))$ e ii) $\phi_{\alpha}(f(x)\cdot g(x)) = \phi_{\alpha}(f(x))\cdot \phi_{\alpha}(g(x))$.

Esto es:

i) Se tiene que:
$$f(x) = \sum_{i=0}^{n} a_i \cdot x^i$$
 y $g(x) = \sum_{j=0}^{m} b_j \cdot x^j$

Luego
$$f(x) + g(x) = h(x) = c_0 + c_1 \cdot x + ... + c_r \cdot x^r$$
, con $c_i = a_i + b_i$

Ahora,
$$\phi_{\alpha}(f(x)+g(x)) = \phi_{\alpha}(h(x)) = c_0 + c_1 \cdot \alpha + ... + c_r \cdot \alpha^r$$
, con

$$\phi_{\alpha}(f(x)) = a_0 + a_1 \cdot \alpha + \dots + a_n \cdot \alpha^n \quad y \quad \phi_{\alpha}(g(x)) = b_0 + b_1 \cdot \alpha + \dots + b_m \cdot \alpha^m \quad ,$$

es decir:

$$\phi_{\alpha}(f(x)) + \phi_{\alpha}(g(x)) = (a_{0} + a_{1} \cdot \alpha + \dots + a_{n}\alpha^{n}) + (b_{0} + b_{1} \cdot \alpha + \dots + b_{m}\alpha^{m})$$

$$= (a_{0} + b_{0}) + (a_{1} + b_{1}) \cdot \alpha + \dots + (a_{n} + b_{m})\alpha^{n}$$

$$= c_{0} + c_{1} \cdot \alpha + \dots + c_{r} \cdot \alpha^{r} \quad , \text{ con } c_{i} = a_{i} + b_{i}$$

$$= \phi_{\alpha}(f(x) + g(x))$$

ii)
$$f(x) \cdot g(x) = \varphi(x) = d_0 + d_1 \cdot x + ... + d_{n+m} \cdot x^{n+m}$$
, con $d_i = \sum_{s=0}^{i} d_s \cdot b_{s-i}$
luego, $\phi_{\alpha}(f(x) \cdot g(x)) = \phi_{\alpha}(\varphi(x)) = d_0 + d_1 \cdot \alpha + ... + d_{n+m} \cdot \alpha^{n+m}$, es decir:

$$\phi_{\alpha}(f(x)) \cdot \phi_{\alpha}(g(x)) = (a_0 + a_1 \cdot \alpha + \dots + a_n \cdot \alpha^n) \cdot (b_0 + b_1 \cdot \alpha + \dots + b_m \alpha^m)$$

$$= c_0 + c_1 \cdot \alpha + c_{n+m} \cdot \alpha^{n+m}, \text{ con } c_i = \sum_{i=1}^i a_i \cdot b_{n-i} = d_i$$

$$= \phi_{\alpha}(f(x) \cdot g(x))$$

Por lo tanto
$$\phi_{\alpha}(f(x)) \cdot \phi_{\alpha}(g(x)) = \phi_{\alpha}(f(x) \cdot g(x))$$

Ejemplo 3:

Sea
$$\phi_0: \mathbb{Q}[x] \to \mathbb{R}$$

$$\phi_0(a_0 + a_1 \cdot x + \dots + a_n \cdot x^n) = a_0 + a_1 \cdot 0 + \dots + a_n \cdot 0^n = a_0$$

Se define:
$$\ker \phi_0 = \{ f(x) \in \mathbb{Q}[x] / \phi_0(f(x)) = 0 \}$$

En el $\ker \phi_0$ están todos los polinomios sin término independiente.

Ejemplo 4:

Sea
$$\phi_3: \mathbb{Q}[x] \to \mathbb{R}$$

Donde
$$\phi_3(a_0 + a_1 \cdot x + ... + a_n \cdot x^n) = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 ... + a_n \cdot 3^n$$

$$\ker \phi_3 = \left\{ f(x) \in \mathbb{Q}[x] / \phi_3(f(x)) = 0 \right\}$$

Tomemos los siguientes ejemplos con x-3, $x^2-9 \in \mathbb{Q}[x]$

$$\phi_3((x-3)) = 3-3=0$$

$$\phi_3((x^2-9))=3^2-9=0$$

En el ker ϕ_3 están todos aquellos polinomios que tengan a 3 como raíz.

Definición 4: Si $f(\alpha) = 0$ entonces α es un cero o raíz de f(x)

Ejemplo 5:

Sea
$$f(x) = x^2 + 1 \in \mathbb{R}[x]$$
, ¿tiene $f(x)$ algún cero?

En los reales (\mathbb{R}) no posee, en cambio en los complejos (\mathbb{C}) si tiene, pues considerando $f(\alpha)$ tal que $\alpha = \pm i$ se tiene:

$$f(i) = i^2 + 1 = -1 + 1 = 0$$

$$f(-i) = (-i)^2 + 1 = -1 + 1 = 0$$

Ejemplo 6:

Sea
$$f(x) = x^3 + 2 \cdot x + 1$$
 en $\mathbb{Z}_3[x]$ ¿tiene $f(x)$ algún cero en \mathbb{Z}_3 ?
$$\mathbb{Z}_3 = \{0, 1, 2\}, \text{ luego } f(0) = 0^3 + 2 \cdot 0 + 1 = 1$$

$$f(1) = 1^3 + 2 \cdot 1 + 1 = 1$$

$$f(2) = 1^3 + 2 \cdot 1 + 1 = 1$$

De lo anterior podemos concluir que f(x) en $\mathbb{Z}_3[x]$ no tiene cero.

Teorema: Sea K un cuerpo, entonces K[x]es un Dominio Euclidiano (D.E.)

Demostración:

Debemos encontrar una función $\eta: K[x] - \{0\} \to \mathbb{Z}_0^+$ tal que:

i)
$$\eta(f(x) \cdot g(x)) \ge \eta(f(x))$$

ii) Sean f(x), g(x) no nulos luego existen q(x), r(x) tal que $f(x) = g(x) \cdot q(x) + r(x)$, con la condición que r(x) = 0 o $\eta(r(x)) < \eta(g(x))$

Considerando la función (grado del polinomio) $gr: K[x] - \{0\} \to \mathbb{Z}_0^+$, se tiene:

1)
$$gr(f(x) \cdot g(x)) \ge gr(f(x))$$
, en efecto:
 $gr(f(x) \cdot g(x)) = gr(f(x)) + gr(g(x)) \ge gr(f(x))$

2) Si
$$f(x)=0$$
 entonces $g(x)=0$

Podemos suponer que $f(x) \neq 0$

Sea
$$gr(f(x)) = n$$

 $gr(g(x)) = m$

Si n < m, entonces q(x) = 0 y r(x) = f(x), luego se cumple la proposición, pues gr(f(x)) < gr(g(x)).

Ahora si $n \ge m$

Por inducción sobre n, se tiene:

Para
$$n=1$$
, $f(x)=a_0+a_1\cdot x$, con $a_1\neq 0$ entonces $gr(g(x))=0$ o 1

Si
$$gr(g(x)) = 0$$
 entonces $g(x) = b_0$, luego $a_0 + a_1 \cdot x = b_0 \cdot q(x) + r(x)$

esto es,
$$a_0 + a_1 \cdot x = b_0 \cdot \left(\frac{a_0}{b_0} + \frac{a_1 \cdot x}{b_0} \right)$$

Ahora si gr(g(x))=1 entonces $g(x)=b_0+b_1\cdot x$. Como se cumple para valores menores que n, debemos demostrar que se cumple para n.

Ahora bien, sean:

$$f(x) = a_0 + a_1 \cdot x + \dots + a_n \cdot x^n$$

$$g(x) = b_0 + b_1 \cdot x + ... + b_m \cdot x^m$$

Se define
$$F(x) = f(x) - \frac{a_n}{b_m} \cdot x^{n-m} \cdot g(x)$$

Nota:
$$\frac{a_n}{b_m} \cdot x^{n-m} \cdot g(x) = \frac{a_n}{b_m} \cdot x^{n-m} \cdot (b_0 + ... + b_m \cdot x^m)$$

Luego F(x) tiene grado menor que n; por hipótesis de inducción se tiene que existe $q_1(x)$ y $r_1(x)$ tal que $F(x) = g(x) \cdot q_1(x) + r_1(x)$ donde $r_1(x) = 0$ ó $gr(r_1(x)) < gr(g(x))$.

En efecto, $f(x) - \frac{a_n}{b_m} \cdot x^{n-m} \cdot g(x) = g(x) \cdot q_1(x) + r_1(x)$ despejando

f(x) tenemos que, $f(x) = \frac{a_n}{b_m} \cdot x^{n-m} \cdot g(x) + g(x) \cdot q_1(x) + r_1(x)$, luego

$$f(x) = g(x) \cdot \left[\frac{a_n}{b_m} \cdot x^{n-m} + q_1(x) \right] + r_1(x) .$$

Haciendo $\frac{a_n}{b_m} \cdot x^{n-m} + q_1(x) = q(x)$ nos resulta $f(x) = g(x) \cdot q(x) + r(x)$

donde r(x) = 0 ó gr(r(x)) < gr(g(x)).

En consecuencia f(x), $g(x) \neq 0 \in K[x]$ entonces existe q(x), r(x) tal que $f(x) = g(x) \cdot q(x) + r(x)$ con r(x) = 0 ó gr(r(x)) < gr(g(x))

Observación: Es posible calcular el mcd entre f(x), $g(x) \in K[x]$.

Por el algoritmo de la división se tiene que dados f(x), $g(x) \neq 0 \in K[x]$, entonces existen $q_0(x)$, $r_1(x)$ tal que $f(x) = g(x) \cdot q_0(x) + r_1(x)$ con $r_1(x) = 0$ ó $gr(r_1(x)) < gr(g(x))$.

Ahora si $r_1(x) = 0$ entonces g(x) es el mcd entre f(x) y g(x)

1.-
$$g(x)|f(x)$$
 y $g(x)|g(x)$

2.- Si existe h(x) tal que h(x)|f(x) y h(x)|g(x) por demostrar h(x)|g(x)

Si gr(r(x)) < gr(g(x))

Usando el algoritmo de la división para g(x) y $r_1(x)$, esto es

existen
$$q_1(x)$$
, $r_0(x) \in K[x]$ tal que $g(x) = r_1(x) \cdot q_1(x) + r_2(x)$, con

$$r_2(x) = 0$$
 ó $gr(r_2(x)) < gr(r_1(x))$.

Ahora si $r_2(x) = 0$ entonces $mcd(f(x), g(x)) = r_1(x)$, pues

1.-
$$r_1(x) | g(x)$$
 y $r_1(x) | f(x)$

Si
$$r_1(x) \mid g(x)$$
 entonces existe $s_1(x) \in K[x]$ tal que $g(x) = r_1(x) \cdot s_1(x)$

Por lo tanto
$$f(x) = r_1(x) \cdot s_1(x) \cdot q_0(x) + r_1(x)$$
.

2.- Si
$$h(x) | f(x)$$
 y $h(x) | g(x)$ por demostrar $h(x) | r_i(x)$

De 1) podemos decir que:

$$f(x) - g(x) \cdot q_0(x) = r_1(x)$$

Por lo tanto $h(x) | r_i(x)$

Ahora si $gr(r_2(x)) < gr(r_1(x))$

Por lo tanto existen $q_2(x), r_3(x) \in K[x]$ tal que $r_1(x) = r_2(x) \cdot q_2(x) + r_3(x)$

con
$$r_3(x) = 0$$
 ó $gr(r_3(x)) < gr(r_2(x))$

Ahora si $r_3(x) = 0$ entonces $mcd(f(x), g(x)) = r_2(x)$

Por otro lado si $gr(r_3(x)) < gr(r_2(x))$

Por lo tanto existen $q_3(x)$, $r_4(x) \in K[x]$ tal que $r_2(x) = r_3(x) \cdot q_3(x) + r_4(x)$ con $r_4(x) = 0$ ó $gr(r_4(x)) < gr(r_3(x))$.

En consecuencia $r_{k-1}(x) = r_k(x) \cdot q_k(x)$ y no hay resto, pues el grado de los polinomios va disminuyendo. Por lo tanto $mcd(f(x), g(x)) = r_k(x)$.

Ejemplo 7:

Encontrar el
$$mcd$$
 entre $f(x) = x^6 + 3x^5 + 4x^2 - 3x^2 + 2$ y $g(x) = x^2 + 2x - 3$ en $\mathbb{R}[x]$.

Trabajo previo:

$$x^{6} + 3x^{5} + 4x^{2} - 3x + 2 \div x^{2} + 2x - 3 = x^{4} + x^{3} + x^{2} + x + 5$$

$$-(x^{6} + 2x^{5} - 3x^{4})$$

$$x^{5} + 3x^{4} + 4x^{2} - 3x + 2$$

$$-(x^{5} + 2x^{4} - 3x^{3})$$

$$x^{4} + 3x^{3} + 4x^{2} - 3x + 2$$

$$-(x^{4} + 2x^{3} - 3x^{2})$$

$$x^{3} + 7x^{2} - 3x + 2$$

$$-(x^{3} + 2x^{2} - 3x)$$

$$5x^{2} + 2$$

$$-(5x^{2} + 10x - 15)$$

$$17 - 10x$$

Luego
$$f(x) = g(x) \cdot (x^4 + x^3 + x^2 + x + 5) + (17 - 10x)$$

En consecuencia
$$g(x) = (17-10x) \cdot q_1(x) + r_1(x)$$

Ahora determinemos $q_1(x)$ y $r_1(x)$, en efecto:

$$x^{2} + 2x - 3 \div -10x + 17 = -\frac{x}{10} - \frac{37}{100}$$

$$-\left(x^{2} + \frac{17x}{7}\right)$$

$$\frac{37x}{10} - 3$$

$$-\left(\frac{37x}{10} - \frac{629}{100}\right)$$

$$\frac{329}{100}$$

LablelsaM

O sea,
$$x^2 + 2x - 3 = (17 - 10x) \cdot \left(-\frac{x}{10} - \frac{37}{100}\right) + \frac{329}{100}$$

Ahora, $q_2(x)$ y $r_2(x)$ están dados por:

$$-10x + 17 \div \frac{329}{100} = -\frac{1000}{329}x + \frac{1700}{329}$$

$$-\frac{(10x)}{-(17)}$$

$$-\frac{(17)}{0}$$

Luego tenemos que $17-10x = \left(\frac{329}{100}\right) \cdot q_2(x) + r_2(x)$, es decir,

$$17 - 10x = \left(\frac{329}{100}\right) \cdot \left(-\frac{1000}{329}x\right) + \left(\frac{1700}{329}\right)$$

Por lo tanto el $mcd(f(x), g(x)) = \frac{329}{100}$

Teorema del factor: Sea f(x) en K[x], se cumple que f(x) es divisible por (x-a) si y sólo si f(a) = 0, con a raíz del polinomio).

Demostración:

 \Rightarrow Hipótesis: $f(x) \in K[x]$ es divisible por (x-a).

Tesis: f(a) = 0, con a raíz del polinomio.

Por hipótesis se tiene que $f(x) = (x-a) \cdot q(x) + r(x)$, pero como es divisible por (x-a) entonces r(x) = 0, luego $f(x) = (x-a) \cdot q(x)$, en consecuencia $f(a) = (a-a) \cdot q(a)$, por lo tanto f(a) = 0.

 \leftarrow Hipótesis: f(a) = 0, con a raíz del polinomio.

Tesis: $f(x) \in K[x]$ es divisible por (x-a).

Universidad de

Lab[e]saM

Por el algoritmo de la división, dados f(x) y (x-a) entonces existe q(x) y r(x) tal que $f(x) = (x-a) \cdot q(x) + r(x)$ con r(x) = 0gr(r(x)) < gr(x-a).

Si r(x) = 0 entonces (x - a) | f(x)

Ahora bien, si gr(r(x)) = 0 entonces r(x) = k, con $k \in K$, luego $f(x) = (x-a) \cdot q(x) + k$

De lo anterior $f(a) = (a-a) \cdot q(x) + k$, luego f(a) = k, pero por hipótesis se tiene f(a) = 0 entonces k = 0, por lo tanto f(x) es divisible por (x-a).

En consecuencia f(x) es divisible por (x-a) si y solo si f(a) = 0.

Ejemplo 8:

Sean
$$f(x) = 3x^6 - 2x^4 + x^3 - x^2 + 5$$
, $g(x) = 2x^3 + 3x^2 - 6x + 2 \in \mathbb{Z}_7[x]$

Encuentre el mcd en $\mathbb{Z}_{7}[x]$ y expréselo como combinación lineal de f(x) y g(x).

$$f(x) = g(x) \cdot q(x) + r(x)$$
, es decir:

$$3x^6 - 2x^4 + x^3 - x^2 + 5 = (2x^3 + 3x^2 - 6x + 2) \cdot (5x^3 - 4x^2 + 6x - 1) + (4x^2 - 4x)$$

$$3x^{6} - 2x^{4} + x^{3} - x^{2} + 5 \div 2x^{3} + 3x^{2} - 6x + 2 = 5x^{3} - 4x^{2} + 6x - 1$$

$$3x^{6} + x^{5} - 2x^{4} + 3x^{3}$$

$$-x^{5} - 2x^{3} - x^{2} + 5$$

$$x^{5} - 5x^{4} + 3x^{3} - x^{2}$$

$$5x^{4} - 5x^{3} + 5$$

$$5x^{4} + 4x^{3} - x^{2} + 5x$$

$$-2x^{3} + x^{2} - 5x + 5$$

$$-2x^{3} - 3x^{2} + 6x - 2$$

$$4x^{2} - 4x$$

Luego $g(x) = r(x) \cdot q_1(x) + r_1(x)$, es decir:

$$2x^3 + 3x^2 - 6x + 2 = (4x^2 - 4x) \cdot (4x - 3) + (-x + 2)$$

$$2x^{3} + 3x^{2} - 6x + 2 \div 4x^{2} - 4x = 4x + 3$$

$$2x^{3} - 2x^{2}$$

$$5x^{2} - 6x + 2$$

$$5x^{2} - 5$$

$$-x + 2$$

Luego $r_1(x) = r_1(x) \cdot q_2(x) + r_2(x)$, es decir:

$$4x^2 - 4x = (-x+2) \cdot (-4x+3) + (-6)$$

$$4x^{2} - 4x \div -x + 2 = -4x + 3$$

$$4x^{2} - x$$

$$\frac{4x^2 - x}{-3x}$$

$$-3x+6$$

Luego $r_2(x) = r_3(x) \cdot q_4(x) + r_4(x)$, es decir:

$$-x + 2 = (-6) \cdot (6x - 5) + (0)$$

Por lo tanto $-x + 2 = -6 \cdot (6x - 5)$

En consecuencia el mcd es $-6=\bar{1}$ en \mathbb{Z}_7

$$-x+2 \div -6 = 6x-5$$

$$-x-5$$

2 2

0

Ejemplo 9:

Sea $f(x) = a_0 + a_1 x + + a_n x^n$ en D[x] con D Dominio de Integridad. Si f tiene un cero $\frac{p}{q}$ (es decir un cero racional) con (p,q) = 1 entonces $\frac{p}{a_0}$ y $\frac{q}{a_n}$.

Demostración:

Como $\frac{p}{q}$ es raíz de f(x), entonces $f\left(\frac{p}{q}\right) = 0$, luego se tiene:

i) Dado
$$a_0 + a_1 \cdot \frac{p}{q} + a_2 \cdot \left(\frac{p}{q}\right)^2 + \dots + a_n \cdot \left(\frac{p}{q}\right)^n = 0$$
, nos resulta

$$a_0 = -a_1 \cdot \frac{p}{q} - a_2 \cdot \left(\frac{p}{q}\right)^2 - \dots - a_n \cdot \left(\frac{p}{q}\right)^n$$
, factorizando por p , nos queda,

$$a_0 = p \cdot \left(-a_1 \cdot \frac{1}{q} - a_2 \cdot \left(\frac{1}{q} \right)^2 - \dots - a_n \cdot \left(\frac{1}{q} \right)^n \right), \text{ por lo tanto } p \mid a_0.$$

Por otro lado:

ii) Si $a_0 \cdot q^n + a_1 \cdot p \cdot q^{n-1} + \dots + a_n \cdot p^n = 0$, luego despejando nos queda $a_n \cdot p^n = -a_0 \cdot q^n - a_1 \cdot p \cdot q^{n-1} - \dots - a_{n-1} \cdot p^{n-1} \cdot q$, para luego factorizar por q nos resulta $a_n \cdot p^n = q \cdot \left(-a_0 \cdot q^{n-1} - a_1 \cdot p \cdot q^{n-2} - \dots - a_{n-1} \cdot p^{n-1} \right)$.

De lo anterior $q \mid a_n \cdot p^n$, pero por hipótesis se tiene que (p,q)=1 luego q/p por lo tanto q/p^n , en consecuencia $q \mid a_n$.

Ejemplo 10:

Use el ejemplo anterior para encontrar los ceros racionales de

$$f(x) = 6x^4 + 17x^3 + 7x^2 + x - 10 \in \mathbb{Q}[x]$$

Si f(x) tiene raíces racionales de la forma $\frac{p}{q}$ entonces $p \mid 10$ y $q \mid 6$

Luego
$$p \in \{\pm 1, \pm 2, \pm 5, \pm 10\}$$
 y $q \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$

Entonces
$$\frac{p}{q} \in \left\{ \pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{2}{3}, \pm \frac{5}{2}, \pm \frac{5}{6}, \pm \frac{5}{3}, \pm \frac{10}{3} \right\}$$

Utilizaremos una tabla para determinar las raíces de f(x), anotando en la primera fila los coeficientes del polinomio y en la primera columna sus posibles raíces.

	6	17	7	1	-10
1	6	23	30	31	21
$\frac{2}{3}$	6	21	21	15	0
$-\frac{5}{6}$	6	12	-3	$\frac{7}{2}$	$-\frac{155}{12}$

Podemos notar que $\frac{2}{3}$ es

una

raíz del polinomio, por lo tanto $f(x) = \left(x - \frac{2}{3}\right) \cdot \left(6x^3 + 21x^2 + 21x + 15\right)$

Corolario: El resto al dividir f(x) por (x-a) es f(a)

Ejemplo 11:

Sea $f(x) = 2x^5 - 3x^3 + 5x^2 + x - 8$. El resto al dividir f(x) por (x + 2) es: $f(-2) = 2(-2)^5 - 3(-2)^3 + 5 \cdot 2^2 - 2 - 8$

$$= -64 + 24 + 20 - 2 - 8$$
$$= -30$$

Podemos notar que el resto del polinomio es -30.

$$2x^5 - 3x^3 + 5x^2 + x - 8 \div x + 2 = 2x^4 - 4x^3 + 5x^2 - 5x + 11$$

22

Corolario: Un polinomio $f(x) \in K[x]$ no nulo de grado n tiene a lo más n ceros en el cuerpo K.

Demostración:

Sea a_1 un cero de f(x) en K entonces $f(a_1) = 0$, luego $f(a_1)$ es el resto de la división de f(x) por $(x-a_1)$, por lo tanto f(x) es divisible por $(x-a_1)$, esto es, $f(x) = (x-a_1) \cdot q_1(x)$ donde $gr(q_1(x)) = n-1$ Ahora, si a_2 es otro cero de f(x) entonces $f(a_2) = 0$, luego $0 = f(a_2) = (a_2 - a_1) \cdot q_1(a_2)$, por lo tanto $q_1(a_2) = 0$, $q_1(x)$ es divisible por $(x-a_2)$, es decir $q_1(x) = (x-a_2) \cdot q_2(x)$ donde $gr(q_2(x)) = n-2$. En consecuencia $f(x) = (x-a_1) \cdot (x-a_2) \cdot q_2(x)$, como también, $f(x) = (x-a_1) \cdot (x-a_2) \cdot \dots \cdot (x-a_r) \cdot q_r(x)$, donde $q_r(x)$ no tiene más ceros en K, por lo tanto $r \le n$.

Si $b \in K$, con $b \neq a_i$, $\forall i = 1, r$ entonces:

 $f(b) = (b-a_1) \cdot ... \cdot (b-a_r) \cdot q_r(b)$, pero $q_r(b) \neq 0$, $(b-a_i) \neq 0$, $\forall i = 1, n$ Luego $f(b) \neq 0$, lo que significa que f(x) no tiene más raíces en K. En consecuencia $f(x) \in K[x]$ no nulo de grado n tiene a lo más n ceros en el cuerpo K.

Definición 5: Sea $f(x) \in K[x]$ un polinomio no constante. Diremos que f(x) es un polinomio irreducible de K[x]si f(x) no puede descomponerse en el producto de dos polinomios de grado menor.

Ejemplo 12:

Sea $f(x) = x^2 - 3 \in \mathbb{Z}[x]$ es irreducible en \mathbb{Z} y en \mathbb{Q} ; pero es reducible en \mathbb{R} .

Propiedad: Sea f(x) no constante de grado 2 o grado 3. Se tiene que $f(x) \in K[x]$ es reducible en K[x] si y sólo si tiene un cero en K[x].

Demostración:

 \Rightarrow Hipótesis: $f(x) \in K[x]$ no constante de grado 2 o grado 3 es reducible en K[x].

Tesis: f(x) tiene un cero en K[x].

Ahora bien, si f(x) es reducible en K[x], entonces existe h(x)

 $g(x) \in K[x]$ tal que $f(x) = h(x) \cdot g(x)$ y el grado de g(x) es menor que el grado de g(x).

Como el grado de f(x) es 2 o 3, entonces h(x) o g(x) es de grado 1.

Supongamos que gr(h(x))=1, entonces h(x)=(x-a) (exceptuando elementos constantes de K), luego h(a)=0, lo que implica que f(a)=0, por lo tanto $a \in K$ es un cero de f(x).

 \leftarrow Hipótesis: f(x) no constante de grado 2 o grado 3, tiene un cero en K[x].

Tesis: $f(x) \in K[x]$ es reducible en K[x].

Por otro lado sea a un cero de f(x) en K, es decir f(a) = 0, entonces f(x) es divisible por (x-a) luego $f(x) = (x-a) \cdot h(x)$, lo que implica que gr(h(x)) = gr(f(x)) = 1, por lo tanto f(x) es reducible en K.

En consecuencia $f(x) \in K[x]$ es reducible si y sólo si tiene un cero en K.

Teorema: Sea $f(x) \in \mathbb{Z}[x]$ no constante, se cumple que f(x) se factoriza en un producto de polinomios de menor grado en $\mathbb{Q}[x]$ si y sólo si se factoriza en polinomios de menor grado en $\mathbb{Z}[x]$.

Nota: Para la demostración de este teorema consulte el texto algebra abstracta de John B. Fraleigh, capítulo 31 página 283.

Corolario: Sea f(x) en $\mathbb{Z}[x]$ con $f(x) = a_0 + a_1 x + + x^n$, con $a_0 \neq 0$. Si f(x) tiene un cero en \mathbb{Q} , entonces tiene un cero m en \mathbb{Z} y $m \mid a_0$.

Demostración:

Si f(x) tiene un cero en \mathbb{Q} entonces f(a) = 0, con $a \in \mathbb{Q}$, luego se tiene $f(x) = (x - a) \cdot q(x)$, con gr(q(x)) = n - 1 lo que significa que f(x) tiene una descomposición con un factor lineal en $\mathbb{Z}[x]$.

$$f(x) = (x-m) \cdot \left(x^{n-1} + \dots + \frac{a_0}{m}\right), \quad \forall m \in \mathbb{Z}$$

Por lo tanto $\frac{a_0}{m} = k$, con $k \in \mathbb{Z}$, entonces $a_0 = m \cdot k$, en consecuencia $m \mid a_0$.

Ejemplo 13:

Sea $f(x) = x^4 - 2x^2 + 8x + 1 \in \mathbb{Q}$. Determinar si f(x) es irreducible.

Suponemos que es reducible, es decir:

- i) Tiene un factor lineal
- ii) Se descompone en 2 polinomios de segundo grado.

Resolución del problema:

i) Si tiene un cero en \mathbb{Q} entonces tiene un cero m en \mathbb{Z} y $m \mid 1$ entonces $m = \pm 1$, luego f(1) = 8 y f(-1) = -8 ¡Contradicción!, pues f(m) = 0

Por otro lado tenemos que:

ii)
$$f(x) = x^4 - 2x^2 + 8x + 1$$

$$= (x^2 + ax + b) \cdot (x^2 + cx + d)$$

$$= x^4 + ax^3 + bx^2 + cx^3 + acx^2 + bcx + dx^2 + adx + bd$$

$$= x^4 + x^3(a+c) + (b+ac+d)x^2 + (bc+ad)x + bd$$

Por igualdad de polinomios se tiene que:

$$a+c=0$$
 $b+ac+d=-2$ $bc+ad=8$ $bd=1$
Como $bd=1$ entonces $b=d=1$ o $b=d=-1$ ¡Contradicción!, por lo tanto $f(x)$ es irreducible.

Criterio de Eisenstein: Sea p un entero primo y $f(x) = a_0 + a_1 + ... + a_n x^n \in \mathbb{Z}[x] \operatorname{con} a_n \neq 0 \operatorname{mod} p$ pero $a_i = 0 \operatorname{mod} p$ $\forall i < n \text{ y } a_0 \neq 0 \operatorname{mod} p^2 \text{ entonces } f(x) \text{ es irreducible sobre } \mathbb{Q}.$

Demostración:

Por teoría anterior basta probar que f(x) es irreducible en \mathbb{Z} .

Supongamos que f no lo es, es decir sean g(x), $q(x) \in \mathbb{Z}[x]$ tal que $f(x) = g(x) \cdot q(x)$ y gr(g(x)) < gr(f(x)), es decir gr(q(x)) < gr(f(x))

luego
$$f(x) = (b_r x^r + ... + b_0) \cdot (c_s x^s + ... + c_0)$$
 con $r, s < n$ y $b_r, c_s \ne 0$
es decir, $a_n x^n + ... + a_0 = (b_r x^r + ... + b_0) \cdot (c_s x^s + ... + c_0)$.

Como $a_0 \not\equiv 0 \mod p^2$ entonces $b_0 \cdot c_0 \not\equiv 0 \mod p^2$, es decir, $b_0 \cdot c_0 \not\equiv \dot{p}^2$ esto implica que b_0 y c_0 no pueden ser ambos múltiplos de p.

Supongamos que $b_0 \not\equiv 0 \bmod p$ y $c_0 \equiv 0 \bmod p$, como $a_n \not\equiv 0 \bmod p$ entonces $b_r \cdot c_s \not\equiv 0 \bmod p$, luego b_r y b_s no son múltiplos de p, es decir $b_n \not\equiv 0 \bmod p$ y $c_s \not\equiv 0 \bmod p$.

Sea m el menor valor de k tal que $c_k \not\equiv 0 \mod p$, de tal forma que $a_m = b_0 \cdot c_m + b_1 \cdot c_{m-1} + \ldots + b_{m-i} \cdot c_i$, $\forall i$ con $0 \le i < m$, luego $b_0 \cdot c_m$ no es múltiplo de p, con $b_0 \cdot c_m \not\equiv 0 \mod p$, por lo tanto $a_m \not\equiv 0 \mod p$, esto nos dice que m = n, en consecuencia s = n; Contradicción!. Luego f(x) es irreducible sobre \mathbb{Z} , como conclusión es irreducible sobre \mathbb{Q} .

Ejemplo 14:

Sea
$$f(x) = 25x^5 - 9x^4 + 3x^2 - 12$$
 es irreducible sobre \mathbb{Q}
Como existe $p = 3$ primo tal que $3 \nmid 25$, pero $3 \mid 9$, $3 \mid 3$, $3 \mid 12$ y $3^2 \nmid 12$
Por lo tanto $f(x)$ es irreductible sobre \mathbb{Q} .

Teorema (Estructura de ideal en K[x]): Si K es un cuerpo entonces cada ideal de K[x] es principal.

Demostración:

Sea I ideal de K[x], con $I = \{0\}$ entonces $I = \langle 0 \rangle$

Supongamos que $I \neq \langle 0 \rangle$, ahora bien, sea $g(x) \in I$ de grado minimal, si gr(g(x)) = 0 entonces g(x) = k, $\forall k \in K$, luego I = K[x] pues, $k \in K$ es invertible, por lo tanto el ideal es $I = \langle 1 \rangle = K[x]$, o sea es todo el anillo. Por otro lado, supongamos que $gr(g(x)) \neq 0$ y sean f(x), $g(x) \in I$ por demostrar que $I = \langle g(x) \rangle$, luego por el algoritmo de la división existe g(x), g(x) tal que g(x) tal que g(x) quantitativa quantitativa

Como $f(x), g(x) \in I$ entonces $r(x) \in I$ y g(x) se escogió de grado minimal entonces r(x) = 0, por lo tanto $f(x) = g(x) \cdot g(x)$.

En consecuencia $I = \langle g(x) \rangle$. Luego cada ideal de K[x] es principal.

Teorema: Un ideal $\langle p(x) \rangle \neq \{0\}$ de K[x] es maximal si y sólo si p(x) es irreducible sobre K.

Demostración:

 \Rightarrow Hipótesis: Un ideal $\langle p(x) \rangle \neq \{0\}$ de K[x] es maximal.

Tesis: p(x) es irreducible sobre K.

Como $\langle p(x) \rangle \neq \{0\}$ de K[x] entonces p(x) no es constante, luego p(x) no es invertible.

Supongamos que p(x) es reducible sobre K, además que existe f(x) y g(x) tal que $p(x) = g(x) \cdot f(x)$ con gr(f(x)), gr(g(x)) < gr(p(x))

Como $p(x) \in \langle p(x) \rangle$ se tiene que $g(x) \cdot f(x) \in \langle p(x) \rangle$ y como este ideal es maximal es primo entonces $g(x) \in \langle p(x) \rangle$ ó $f(x) \in \langle p(x) \rangle$.

Si $g(x) \in \langle p(x) \rangle$ entonces $g(x) = p(x) \cdot s(x), \forall s(x) \in K[x],$ con $gr(p(x)) \leq gr(g(x))$; Contradicción!.

Ahora, si $f(x) \in \langle p(x) \rangle$ entonces $f(x) = p(x) \cdot r(x)$, $\forall r(x) \in K[x]$, con $g(p(x)) \leq gr(r(x))$ ¡Contradicción!, por lo tanto p(x) no es reducible, luego p(x) es irreducible.

 \leftarrow Hipótesis: p(x) es irreducible sobre K.

Tesis: $\langle p(x) \rangle \neq \{0\}$ de K[x] es maximal, es decir:

Sea $\langle p(x) \rangle \subset I \subset K[x]$ por demostrar $\langle p(x) \rangle = I$ ó I = K[x].

Si $I \triangleleft K[x]$ entonces $I = \langle g(x) \rangle$ pero K[x] es Dominio de Ideales Principales (D.I.P.)

Ahora supongamos que $\langle p(x) \rangle \neq I$ debemos demostrar que I = K[x]

En efecto, como $\langle p(x) \rangle \subset \langle g(x) \rangle$ luego $p(x) \in \langle g(x) \rangle$ entonces $p(x) = g(x) \cdot h(x)$, con g(x) = constante ó h(x) = constante.

Si g(x) = constante entonces $\langle g(x) \rangle = K[x]$, por lo tanto $\langle p(x) \rangle \neq \{0\}$ de K[x] es maximal.

Ejemplo 15:

Demuestre que $f(x) = x^2 + 8x - 2$ es irreducible sobre \mathbb{Q} . ¿Es irreducible en \mathbb{R} , y en \mathbb{C} ?

a) Por ver que $f(x) = x^2 + 8x - 2$ es irreducible sobre \mathbb{Q} .

Por criterio de Eisenstein se tiene:

Considerando p = 2 primo se cumple que $2 \nmid 1$ pero $2 \mid 8$, $2 \mid 2$ y $4 \mid 2$.

Por lo tanto f(x) es irreducible en \mathbb{Q} .

b) Por otro lado veremos si $f(x) = x^2 + 8x - 2$ es irreducible en \mathbb{R} y \mathbb{C} .

Se tiene
$$x^2 + 8x - 2 = 0$$
, luego $x = -4 \pm 3\sqrt{2}$ lo que implica que

$$x_1 = -4 - 3\sqrt{2}$$
 y $x_2 = -4 + 3\sqrt{2}$, por lo tanto es irreducible en \mathbb{R} y \mathbb{C}

Ejemplo 16:

Determinar cuál de los siguientes polinomios satisface el criterio de Eisenstein.

a)
$$x^2 - 12$$

Tomando p=3 se verifica que $3 \nmid 1$ pero $3 \mid 12$ y $9 \nmid 12$, por lo tanto x^2-12 es irreducible.

b)
$$4x^{10} - 9x^3 + 24x - 18$$

Considerando p = 3 se tiene que $3 \nmid 4$ pero $3 \mid 18$, $3 \mid 24$, $3 \mid 9$ y además $9 \mid 18$ Como $9 \mid 18$, no se satisface el criterio de Eisenstein, luego $4x^{10} - 9x^3 + 24x - 18$ no es irreducible.

Ejemplo 17:

Encuentre todos los polinomios de grado 2 que son irreducibles sobre \mathbb{Z}_2 Los polinomios de grado 2 podemos escribirlos como:

$$f(x) = a_2 x^2 + a_1 x + a_0$$
, con $a_2, a_1, a_0 \in \mathbb{Z}_2 = \{\bar{0}, \bar{1}\}$

Por lo tanto $a_2 = 1$, luego $f(x) = x^2 + a_1 x + a_0$

Ahora bien, si $a_1 = a_0 = 0$ entonces $f(x) = x^2$, es reducible, pues $f(\bar{0}) = (\bar{0})^2 = \bar{0}$.

Además, si $a_1 = a_0 = 1$ entonces $f(x) = x^2 + x + 1$, es irreducible.

Por otro lado, si $a_1 = 1$, $a_0 = 0$ entonces $f(x) = x^2 + x$, es reducible, pues $f(\bar{0}) = (\bar{0})^2 + \bar{0} = \bar{0}.$

Asimismo, si $a_1 = 0$, $a_0 = 1$ entonces $f(x) = x^2 + 1 = (x+1) \cdot (x+1)$, es reducible, pues $f(\bar{0}) = (\bar{1})^2 + \bar{1} = \bar{0}$, está en \mathbb{Z}_2 .

Por lo tanto el único polinomio irreducible sobre \mathbb{Z}_2 es $f(x) = x^2 + x + 1$.

Teorema: Sea p(x) un polinomio irreducible en K[x], si $p(x) | r(x) \cdot s(x)$, para algún r(x), $s(x) \in K[x]$ entonces p(x) | r(x) ó p(x) | s(x).

Demostración:

En consecuencia p(x)|r(x) ó p(x)|s(x).

Corolario: Si $p(x) \in K[x]$ es irreducible y $p(x) \mid r_1(x) \cdot ... \cdot r_n(x)$ $p(x) \mid r_i(x)$, para algún i = 1, n

Nota: Para la demostración de este corolario consulte el texto algebra abstracta de John B. Fraleigh, capítulo 31 página 287.

Proposición: Sea f(x) un polinomio no constante en K[x], entonces f(x) se puede factorizar en un producto de polinomios irreducibles y esta factorización es única, salvo en unidades.

Demostración:

Es evidente si consideramos a f(x) irreducible.

Ahora bien, si f(x) es reducible entonces $f(x) = g(x) \cdot q(x)$ tal que $gr(g(x)) \vee gr(g(x)) < gr(f(x))$, si $g(x) \vee g(x)$ son irreducibles queda demostrado. Ahora, si alguno fuera reducible por ejemplo g(x) entonces $g(x) = q_1(x) \cdot q_2(x)$, con $gr(q_1(x)), gr(q_2(x)) < gr(g(x))$, luego $f(x) = q_1(x) \cdot q_2(x) \cdot q(x)$

Por lo tanto $f(x) = q_1(x) \cdot q_2(x) \cdot ... \cdot q_r(x)$, con $q_i(x)$ irreducibles, $\forall i = 1, n$, ésta descomposición es única.

Ahora, supongamos que existen $p_i(x)$ polinomios irreducibles tal que $f(x) = p_1(x) \cdot \dots \cdot p_s(x)$ luego $p_1(x) \cdot \dots \cdot p_s(x) = q_1(x) \cdot \dots \cdot q_r(x)$, en efecto $p_1(x) | q_1(x) \cdot ... \cdot q_r(x)$ lo que implica $p_1(x) | q_j(x)$, $\forall j = 1, r$, con $p_1(x)$ irreducible.

Supongamos que $p_1(x) | q_1(x)$ entonces $q_1(x) = p_1(x) \cdot h(x)$, con $q_1(x)$ irreducible, luego $h(x) = \text{constante} = u_1 \in K$, con u unidad, por lo tanto $q_1(x) = p_1(x) \cdot u_1$, en consecuencia se tiene:

$$p_1(x) \cdot \dots \cdot p_s(x) = p_1(x) \cdot u_1 \cdot q_2(x) \cdot \dots \cdot q_r(x)$$

$$p_2(x) \cdot \dots \cdot p_s(x) = u_1 \cdot q_2(x) \cdot \dots \cdot q_r(x)$$

Luego $p_2(x) | q_2(x) \cdot ... \cdot q_r(x)$ entonces $p_2(x) | q_j(x)$, $\forall j = 2, r$

Asimismo $p_2(x) \mid q_2(x)$, por lo tanto $q_2(x) = p_2(x) \cdot u_2$, con $u_2 \in K$ En efecto, se tiene que:

$$p_{2}(x) \cdot \dots \cdot p_{s}(x) = u_{1} \cdot u_{2} \cdot p_{2}(x) \cdot q_{3}(x) \cdot \dots \cdot q_{r}(x)$$

$$p_{3}(x) \cdot \dots \cdot p_{s}(x) = u_{1} \cdot u_{2} \cdot q_{3}(x) \cdot \dots \cdot q_{r}(x)$$

$$\vdots$$

$$1 = u_{1} \cdot u_{2} \cdot \dots \cdot u_{s} \cdot (q_{s+1}(x) \cdot \dots \cdot q_{r}(x)), \operatorname{con}(q_{s+1}(x) \cdot \dots \cdot q_{r}(x)) = g(x)$$

Por lo tanto r = s, en consecuencia p_i son únicos salvo unidades, pues $p_i(x) = u_1 \cdot q_i(x)$.

Definición 6: Sea A un D.F.U., diremos que un polinomio no constante $f(x) = a_0 + ... + a_n \cdot x^n$ en A[x] es primitivo si y sólo si los divisores comunes de los a_i son unidades de A.

Ejemplo 18:

Determinar si $f(x) = 3x^2 + 5x + 1$ en $\mathbb{Z}[x]$ es un polinomio primitivo. f(x) no es primitivo, pues $6x^2 + 10x + 2 = 2 \cdot (3x^2 + 5x + 1)$ y $2 \not\in U(\mathbb{Z})$

Proposición: Sea A un D.F.U., entonces cada polinomio no constante $f(x) \in A[x]$ se puede escribir como $f(x) = c \cdot g(x)$ donde $c \in A$ y g(x) es un polinomio primitivo en A[x]; c y g(x) son únicos salvo unidades.

Demostración:

Es evidente si f(x) es primitivo.

Ahora que sucede si no lo es, sea $d = mcd(a_0, ..., a_n)$, entonces $d \mid a_i$, $\forall i = 0, n$, luego $a_i = d \cdot a_i$, con $a_i \in A$, asimismo $a_0 = d \cdot a_0$ como también $a_n = d \cdot a_n$, por lo tanto $f(x) = d \cdot (a_0 + a_1 \cdot x + ... + a_n \cdot x^n)$, con $d \in A$ y $(a_0 + a_1 \cdot x + ... + a_n \cdot x^n) \in A[x]$ y es primitivo.

Ahora verificaremos unicidad:

Sea $f(x) = b \cdot h(x)$, con $b \in A$ y h(x) primitivo, se tiene que $f(x) = c \cdot g(x)$, considerando e = mcd(b, c), podemos decir $\frac{b}{e} \cdot h(x) = \frac{c}{e} \cdot g(x)$, con $\frac{b}{e} \cdot \frac{c}{e} \in A$ y $mcd\left(\frac{b}{e}, \frac{c}{e}\right) = 1$, entonces $\frac{b}{e} \cdot (b_0 + b_1 \cdot x + ... + b_n \cdot x^n) = \frac{c}{e} \cdot (c_0 + c_1 \cdot x + ... + c_n \cdot x^n)$, ahora, por

igualdad de polinomios se tiene:

$$\frac{b}{e} \cdot b_0 = \frac{c}{e} \cdot c_0 \quad \dots \quad \frac{b}{e} \cdot b_n = \frac{c}{e} \cdot c_n$$

Luego $\frac{c}{e} \left| \frac{b}{e} \cdot b_0 \right|$ entonces $\frac{c}{e} \left| b_0 \right|$, asimismo se verifica que $\frac{c}{e} \left| b_n \right|$

Por lo tanto $\frac{c}{e} | b_i$, $\forall i = 0, n$, pero h(x) es primitivo entonces $\frac{c}{e}$ es una unidad.

Por otra parte $\frac{b}{e} | c_i$, $\forall i = 0, n$ entonces $\frac{b}{e}$ es una unidad, luego $\frac{c}{e} = u_1$, con $u_1 \in A$ unidad y $\frac{b}{e} = u_2$, con $u_2 \in A$ unidad, por lo tanto $c = e \cdot u_1$ y $b = e \cdot u_2$, con $c \cdot u_1^{-1} = e$, sustituyendo se obtiene: $b = c \cdot u_1^{-1} \cdot u_2 = c \cdot u_3$ con $u_1^{-1} \cdot u_2 = u_3$ siendo unidad en A.

Por lo tanto c y g(x) son únicos salvo unidades.

Propiedad (Lema de Gauss): Sea *A* un Dominio de Factorización Única, entonces un producto de polinomios primitivos es primitivo.

Demostración:

Consideremos $f(x) = a_0 + a_1 \cdot x + \dots + a_n \cdot x^n$ y $g(x) = b_0 + b_1 \cdot x + \dots + b_n \cdot x^n$ primitivos en A[x].

Sea $h(x) = f(x) \cdot g(x)$ y $p \in A$ un irreducible, como f(x) es primitivo p no divide a todos los a_i , luego tomando a_r el primer coeficiente de f(x) que no es divisible por p, es decir $p \mid a_i$, $\forall i < r$.

Por otro lado como g(x) es primitivo, entonces p no divide a todos los b_j . Sea b_s el primer coeficiente de g(x) que no es divisible por p, es decir $p \mid b_i$, $\forall j < s$.

El coeficiente de x^{r+s} en $h(x) = f(x) \cdot g(x)$ está dado por $c_{r+s} = a_0 \cdot b_{r+s} + a_1 \cdot b_{r+s-1} + \dots + a_{r-1} \cdot b_{s+1} + a_r \cdot b_s + a_{r+1} \cdot b_{s-1} + \dots + a_{r+s} \cdot b_0,$ donde $a_0 \cdot b_{r+s} + a_1 \cdot b_{r+s-1} + \dots + a_{r-1} \cdot b_{s+1}$ y $a_{r+1} \cdot b_{s-1} + \dots + a_{r+s} \cdot b_0$ son

Teorema: Sea A un D.F.U., K el cuerpo de los cocientes de A, $f(x) \in A[x]$ tal que gr(f(x)) > 0, si f(x) es irreducible en A[x] entonces lo es en K[x]. Si f(x) es primitivo en A[x] e irreducible en K[x], entonces f(x) es irreducible en A[x].

divisibles por p, pero $p \nmid a_r \cdot b_s$ entonces $p \nmid c_{r+s}$, por lo tanto h(x) es primitivo.

Demostración:

 \Rightarrow Sea f(x) un polinomio no constante en A[x]. Supongamos que existen r(x), $s(x) \in K[x]$ polinomios de menor grado que f(x) tal que $f(x) = r(x) \cdot s(x)$.

Como r(x), $s(x) \in K[x]$, los coeficientes de estos polinomios son de la forma $\frac{a}{b}$, con $b \neq 0$ y $a, b \in A$.

Quitando denominadores se tiene que:

$$d \cdot f(x) = e \cdot r_1(x) \cdot s_1(x)$$
, con $d, e \in A$,
 $r_1(x), s_1(x) \in A[x]$ y $gr(r_1(x)) = gr(r(x))$
 $gr(s_1(x)) = gr(s(x))$

Luego $f(x), r_1(x), s_1(x) \in A[x]$, es decir cada uno de ellos se puede escribir como el producto de un elemento de A por un polinomio primitivo en A[x].

Por lo tanto se tiene que:

$$f(x) = c \cdot g(x) \text{ , con } c \in A \text{ y } g(x) \text{ primitivo en } A[x]$$

$$r_1(x) = c_1 \cdot r_2(x) \text{ , con } c_1 \in A \text{ y } r_2(x) \text{ primitivo en } A[x]$$

$$s_1(x) = c_2 \cdot s_2(x) \text{ , con } c_2 \in A \text{ y } s_2(x) \text{ primitivo en } A[x]$$

$$\text{Luego} \qquad (d \cdot c) \cdot g(x) = (e \cdot c_1 \cdot c_2) \cdot r(x) \cdot s(x) \text{ , con } g(x), r(x) \cdot s(x)$$

$$\text{polinomios primitivos, entonces} (e \cdot c_1 \cdot c_2) = (d \cdot c) \cdot u \text{ , con } u \text{ unidad de } A$$

Por lo tanto $A \cdot c \cdot g(x) = A \cdot c \cdot u \cdot r_2(x) \cdot s_2(x)$, en efecto $c \cdot g(x) = f(x) = c \cdot u \cdot r_2(x) \cdot s_2(x)$ en A[x] de lo anterior podemos decir que f(x) es irreducible en A[x].

⇐ Demostración queda de ejercicio para el lector.

Teorema: Sea A un Dominio de Factorización Única, entonces A[x] también lo es.

Demostración:

Sea $f(x) \in A[x]$, con $f(x) \neq 0$ y no unidad

Si gr(f(x)) = 0, $f(x) = c \in A$ y como A es un D.F.U. entonces A[x] también lo es.

Ahora bien, si gr(f(x)) > 0 entonces:

 $f(x) \in K[x]$, donde K es un cuerpo de los cuocientes de A.

 $f(x) = p_1(x) \cdot ... \cdot p_r(x)$, donde $p_i(x)$ es irreducible en K[x].

Los coeficientes de $p_i(x)$ son de la forma $\frac{a}{b}$, con $a, b \in A$ y $b \neq 0$

Quitando los denominadores se tiene:

 $d \cdot f(x) = q_1(x) \cdot ... \cdot q_r(x)$, donde d y los coeficientes de los $q_i(x)$ están en A, los $q_i(x)$ son irreductibles en A[x] y cada $p_i(x) = q_i(x) \cdot u_i$, donde u_i es unidad de A.

Como f(x), $q_j(x) \in A[x]$, $\forall j = 1$, r se tiene que: $f(x) = c \cdot g(x)$, con $c \in A$ y g(x) primitivo en A[x].

Ahora bien $q_j(x) = c_j \cdot q_j(x)$, con $c_j \in A$ y $q_j(x)$ primitivo en A[x],

 $\forall j = 1, r$, por lo tanto se obtiene que:

 $d \cdot c \cdot g(x) = c_1 \cdot \dots \cdot c_r \cdot q_1(x) \cdot \dots \cdot q_j(x)$, entonces $c_1 \cdot \dots \cdot c_r = d \cdot c \cdot v$, donde v es unidad en A, luego sustituyendo nos resulta:

$$\cancel{d} \cdot c \cdot g(x) = \cancel{d} \cdot v \cdot q_1(x) \cdot \dots \cdot q_i(x), \text{ luego } f(x) = (c \cdot v) \cdot q_1(x) \cdot \dots \cdot q_i(x).$$

Por lo tanto f(x) se descompone en producto de irreducibles en A[x]. En consecuencia A[x] es D.F.U.

Ejemplo 19:

Demuestre que $I = \{a + f(x) / a \in 2\mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ es un ideal de $\mathbb{Z}[x]$, Por demostrar que, $I \triangleleft \mathbb{Z}[x]$.

Demostración:

- i) Dados $a + f(x), b + g(x) \in I$ probar que $(a + f(x)) (b + g(x)) \in I$, tenemos que (a + f(x)) (b + g(x)) = (a b) + (f(x) g(x)), con $(a b) \in 2\mathbb{Z}$ y $(f(x) g(x)) = h(x) \in \mathbb{Z}[x]$, por lo tanto $c + h(x) \in I$.
- ii) $g(x) \in \mathbb{Z}[x], a + f(x) \in I$, por demostrar que **a**) $g(x) \cdot (a + f(x)) \in I$ y **b**) $(a + f(x)) \cdot g(x) \in I$.

a)
$$g(x) \cdot (a + f(x)) = g(x) \cdot a + g(x) \cdot f(x)$$

 $= (b_0 + b_1 \cdot x + ... + b_n \cdot x^n) \cdot a + g(x) \cdot f(x)$
 $= b_0 \cdot a + b_1 \cdot x \cdot a + + b_n \cdot x^n \cdot a + g(x) \cdot f(x)$, con

 $b_1 \cdot x \cdot a + \dots + b_n \cdot x^n \cdot a = h(x)$, por lo tanto $b_0 \cdot a + (h(x) + f(x)) \in I$

b)
$$(a + f(x)) \cdot g(x) = a \cdot g(x) + f(x) \cdot g(x)$$

 $= a \cdot (b_0 + b_1 \cdot x + ... + b_n \cdot x^n) + f(x) \cdot g(x)$
 $= a \cdot b_0 + a \cdot b_1 \cdot x + + a \cdot b_n \cdot x^n + g(x) \cdot f(x)$, con
 $a \cdot b_1 \cdot x + + a \cdot b_n \cdot x^n = h(x)$, por lo tanto $a \cdot b_0 + (h(x) + f(x)) \in I$

En consecuencia de lo anterior $I \triangleleft \mathbb{Z}[x]$.

Nota: A continuación se mencionarán los teoremas fundamentales de extensión a cuerpo, considerando que dichos teoremas no serán demostrados pues no forman parte esencial de nuestro estudio y se pueden desprender fácilmente de los teoremas de los capítulos anteriores.

Teorema de Kronecker: Sea F un cuerpo y sea f(x) un polinomio no nulo en F[x], entonces existe un cuerpo extendido E de F y un $\alpha \in F$ tal que $f(\alpha) = 0$.

Teorema: Sea K un cuerpo y I un ideal maximal de K[x], entonces K[x]/I es un cuerpo isomorfo a $K[\alpha]$, donde $\alpha \in F$ cuerpo, tal que $f(\alpha) \in F$.

Ejemplo 20:

Sea \mathbb{R} un cuerpo y $f(x) = x^2 + 1$ un polinomio irreducible en $\mathbb{R}[x]$. El ideal $I = \langle x^2 + 1 \rangle$ es un ideal maximal de $\mathbb{R}[x]$, entonces $\mathbb{R}[x]/\langle x^2 + 1 \rangle$ es un cuerpo.

Consideremos
$$r \in \mathbb{R}$$
, con $r + \langle x^2 + 1 \rangle \in \mathbb{R}[x] / \langle x^2 + 1 \rangle$, tal que

$$\mathbb{R}[x]/\langle x^2+1\rangle$$
 es un cuerpo extendido de \mathbb{R} .

Si
$$\alpha = x + \langle x^2 + 1 \rangle$$
, entonces $\alpha^2 + 1 = (x + \langle x^2 + 1 \rangle)^2 + (1 + \langle x^2 + 1 \rangle)$
$$= (x^2 + 1) + \langle x^2 + 1 \rangle = 0$$

Luego α es un cero de (x^2+1) . Comúnmente se identifica $\mathbb{R}[x]/\langle x^2+1\rangle$ como el cuerpo \mathbb{C} .

Ejemplo 21:

$$z^{\mathbb{Z}_3[x]}/\langle x^2+\overline{1}\rangle$$
 es cuerpo?

Por teorema, $\mathbb{Z}_3[x]/\langle x^2 + \overline{1} \rangle$ es cuerpo si $\langle x^2 + \overline{1} \rangle$ es un ideal maximal.

Además se sabe que $\langle x^2 + \overline{1} \rangle$ es un ideal maximal si y sólo si $x^2 + \overline{1}$ es un polinomio irreducible en $\mathbb{Z}_3[x]$. Es claro que $g(x) = x^2 + \overline{1}$ es irreducible en $\mathbb{Z}_3[x]$, ya que para todo $\alpha \in \mathbb{Z}_3$, $g(\alpha) \neq \overline{0}$, en consecuencia $g(x) = x^2 + \overline{1}$ es irreducible en $\mathbb{Z}_3[x]$.

Por lo tanto, $\langle x^2 + \bar{1} \rangle$ es un ideal maximal de $\mathbb{Z}_3[x]$, lo que implica que $\mathbb{Z}_3[x]/\langle x^2 + \bar{1} \rangle$ es cuerpo.

Ejemplo 22:

Determine el inverso de
$$p(x) = \overline{(x+1)}$$
 en $\mathbb{Z}_{11}[x]/\langle x^2+1\rangle$

Se sabe que los elementos de $\mathbb{Z}_{11}[x]$ son de la forma $\overline{(a \cdot x + b)}$,

con $a, b \in \mathbb{Z}_{11}$. Si $p(x) \notin \langle x+1 \rangle$, entonces u(x) tal que

$$u(x) \cdot p(x) = p(x) \cdot u(x) = \overline{1}, \text{ con } p(x), u(x) \in \mathbb{Z}_{11}[x] / \langle x^2 + 1 \rangle$$

Aplicando el isomorfismo de $\mathbb{Z}_{11}[x]/(x^2+1)$ en $\mathbb{Z}_{11}[\alpha]$, por el teorema

anterior y por ser φ un homomorfismo, tenemos que:

$$\varphi(u(x)\cdot p(x)) = \varphi(\bar{1})$$

$$\varphi(u(x)) \cdot \varphi(p(x)) = \varphi(\bar{1})$$

$$(a \cdot \alpha + b) \cdot (\alpha + 1) = \overline{1} + 0 \cdot \alpha$$

$$a \cdot \alpha^2 + (a+b) \cdot \alpha + b = \overline{1} + 0 \cdot \alpha$$
.

Considerando que $f(\alpha) = \overline{0}$, entonces $\alpha^2 + 1 = 0$, es decir $\alpha^2 = -1$ lo que implica que $\sqrt{\alpha} = \sqrt{-1} = i$.

Luego la igualdad $a \cdot \alpha^2 + (a+b) \cdot \alpha + b = \bar{1} + 0 \cdot \alpha$ se transformará en $(a+b) \cdot \alpha + b - a = \bar{1} + 0 \cdot \alpha$, tal que se establecerán las ecuaciones:

b-a=1 y a+b=0. Resolviendo el sistema de ecuaciones, se tiene que las soluciones son a=5 y b=6.

Por lo tanto, el inverso de $p(x) = \overline{(x+1)}$ es el polinomio $u(x) = \overline{(5 \cdot x + 6)}$, tal que $p(x), u(x) \in \mathbb{Z}_{11}[x] / \langle x^2 + 1 \rangle$.

Ejemplo 23:

Determine el inverso de $p(x) = \overline{(x+1)} = (x+1) + I$ en

$$\mathbb{Q}[x] / \langle x^2 + 6 \cdot x + 6 \rangle.$$

Primero aplicaremos el algoritmo de la división a $x^2 + 6 \cdot x + 6$ y x + 1, obteniendo lo siguiente:

$$x^{2} + 6 \cdot x + 6 \div x + 1 = x + 5$$

$$-(x^{2} + x)$$

$$5 \cdot x + 6$$

$$-(5 \cdot x + 5)$$

$$1$$

De esta forma podemos decir que, $x^2 + 6 \cdot x + 6 = (x+1) \cdot (x+5) + 1$

, sabiendo que $\mathbb{Q}[x]$ posee estructura de cuerpo, luego despejamos el resto de la división, y obtenemos:

$$1 = x^{2} + 6 \cdot x + 6 - (x+1) \cdot (x+5)$$

$$1 + I = \left[(x^{2} + 6 \cdot x + 6) + I \right] - \left[(x+1) \cdot (x+5) + I \right]$$

$$1 + I = I - \left[(x+1) \cdot (x+5) + I \right]$$

 $1+I = [(x+1)+I] \cdot [-(x+5)+I]$. Por lo tanto, el inverso de $p(x) = \overline{(x+1)}$ es el polinomio $u(x) = -\overline{(x+5)} = (x+5)+I$.

Lab[e]saM

Ejercicios

- **1.-** Sea $f(x) = 1 \in A[x]$, verificar que $\phi_{\alpha}(f(x)) = 1$
- **2.-** Sea $f(x) = x^2 3$, tal que $f(x) \in \mathbb{Q}[x]$, comprobar que es irreducible en \mathbb{Q} .
- **3.-** Determinar si el polinomio $8x^3 + 6x^2 9x + 24$ satisface el criterio de Eisenstein.
- **4.-** $\langle x^2 1 \rangle$ es un cuerpo?
- 5.- $\left\langle \begin{bmatrix} x \\ x^3 + 3 \right\rangle$ es cuerpo?
- **6.-** Determine el inverso de $p(x) = 2 \cdot x^2 1$ en el cuerpo $\mathbb{Q}[x] / (x^3 + 3)$.
- 7.- Encuentre el número de elementos y la forma que tienen estos elementos en el cuerpo $\mathbb{Z}_3[x]/\langle x^2+\bar{1}\rangle$.

Desarrollo:

1.- Sea $f(x)=1 \in A[x]$, verificar que $\phi_{\alpha}(f(x))=1$

Se tiene que:

$$\begin{aligned} \phi_{\alpha} \left(f(x) \right) &= \phi_{\alpha} \left(1 \right) = \phi_{\alpha} \left(1 + a_{1} \cdot x + a_{2} \cdot x^{2} + \dots + a_{n} \cdot x^{n} \right) \\ &= \phi_{\alpha} \left(1 + 0 \cdot x + 0 \cdot x^{2} + \dots + 0 \cdot x^{n} \right) \\ &= 1 + 0 \cdot \alpha + 0 \cdot \alpha^{2} + \dots + 0 \cdot \alpha^{n} \\ &= 1 \end{aligned}$$

Por lo tanto $\phi_{\alpha}(f(x))=1$

2.- Sea $f(x) = x^2 - 3$, tal que $f(x) \in \mathbb{Q}[x]$, comprobar que es irreducible en \mathbb{Q} .

Supongamos que es reducible, entonces tiene un cero en Q

Luego tiene un cero $m \in \mathbb{Z}$ y $m \mid a_0$, es decir $m \mid 3$

Por lo tanto $m = \pm 1$ o ± 3

Si $m = \pm 1$ entonces f(m) = -2

Ahora bien, si $m = \pm 3$ entonces f(m) = 6 ¡Contradicción!, pues f(m) = 0 Luego f(x) es irreducible en \mathbb{Q} .

3.- Determinar si el polinomio $8x^3 + 6x^2 - 9x + 24$ satisface el criterio de Eisenstein.

Tomando p = 3 se cumple que $3 \nmid 8$ pero $3 \mid 24, 3 \mid 9, 3 \mid 6$ y $9 \nmid 24$

Por lo tanto $8x^3 + 6x^2 - 9x + 24$ es irreducible.

4.-
$$i \frac{\mathbb{Z}_{11}[x]}{\langle x^2 + \overline{1} \rangle}$$
 es un cuerpo?

Como se sabe por teorema, $\mathbb{Z}_{11}[x]/\langle x^2+\bar{1}\rangle$ es cuerpo si $\langle x^2+\bar{1}\rangle$ es un ideal maximal. Además se sabe que $\langle x^2+\bar{1}\rangle$ es un ideal maximal si y sólo si $x^2+\bar{1}$ es un polinomio irreducible en $\mathbb{Z}_{11}[x]$. Ahora bien, es claro que $f(x)=x^2+\bar{1}$ es irreducible en $\mathbb{Z}_{11}[x]$, ya que para todo $\alpha\in\mathbb{Z}_{11}$ se tiene que $f(\alpha)\neq\bar{0}$, por lo tanto, de acuerdo al teorema anterior, $\mathbb{Z}_{11}[x]/\langle x^2+\bar{1}\rangle$ es isomorfo a $\mathbb{Z}_{11}[\alpha]$.

5.-
$$\mathcal{Q}[x]/\langle x^3+3\rangle$$
 es cuerpo?

Por teorema, $\mathbb{Q}[x]/\langle x^3+3\rangle$ es cuerpo si $\langle x^3+3\rangle$ es un ideal maximal.

Además se sabe que $\langle x^3 + 3 \rangle$ es un ideal maximal si y sólo si $x^3 + 3$ es un polinomio irreducible en $\mathbb{Q}[x]$. Es claro que $f(x) = x^3 + 3$ es irreducible en $\mathbb{Q}[x]$, por el criterio de Einseinstein:

Sea p=3 tal que p es un número primo, por verificar que p/a_n y $p \mid a_i$ para todo i < n y además p^2/a_0 .

Es claro que 3/1 y 3/3, pero $3^2/3$ con lo cual el criterio falla, entonces $f(x) = x^3 + 3$ es irreducible en $\mathbb{Q}[x]$.

Por lo tanto, $\langle x^3 + 3 \rangle$ es un ideal maximal, lo que implica que

$$\mathbb{Q}[x]/\langle x^3+3\rangle$$
 es cuerpo.

6.- Determine el inverso de $p(x) = 2 \cdot x^2 - 1$ en el cuerpo $\mathbb{Q}[x]/(x^3 + 3)$.

Aplicando el isomorfismo φ de $\mathbb{Q}[x]/\langle x^3+3\rangle$ en $\mathbb{Q}[\alpha]$, tenemos que

 $p(\alpha) = 2 \cdot \alpha^2 - 1$. Si $p(x) \notin \langle x^3 + 3 \rangle$, entonces existe un h(x) tal que

$$h(x) \cdot p(x) = p(x) \cdot h(x) = \overline{1}$$
, con $p(x), h(x) \in \mathbb{Q}[x]$ Luego se

sabe que h(x) tendrá la forma $\overline{(c \cdot x^2 + b \cdot x + a)}$. Ahora bien, aplicando el isomorfismo φ a $h(x) \cdot p(x) = \overline{1}$, se tiene que:

$$\varphi(h(x)) \cdot \varphi(p(x)) = \varphi(\bar{1})$$

$$h(a) \cdot p(a) = \overline{1}$$

 $(c \cdot \alpha^2 + b \cdot \alpha + a) \cdot (2 \cdot \alpha^2 - 1) = 1 + 0 \cdot \alpha + 0 \cdot \alpha^2$, luego realizando todas las operaciones pertinentes, obtenemos la igualdad:

$$(-a-6\cdot b)+(-b-6\cdot c)\cdot \alpha+(-c+2\cdot c)\cdot \alpha^2=1+0\cdot \alpha+0\cdot \alpha^2.$$

Ahora bien, igualando los coeficientes, obtenemos el siguiente sistema de ecuaciones $-a-6\cdot b=1$, $-b-6\cdot c=0$ y $-c+2\cdot a=0$. Resolviendo el sistema, tenemos como soluciones $a=\frac{1}{71}$, $b=-\frac{12}{71}$ y $c=\frac{2}{71}$.

Por lo tanto el inverso de $p(x) = 2 \cdot x^2 - 1$ es el polinomio

$$h(x) = \frac{1}{71} - \frac{12}{71} \cdot x + \frac{2}{71} \cdot x^2$$
, tal que $p(x), h(x) \in \mathbb{Q}[x] / (x^3 + 3)$.

7.- Encuentre el número de elementos y la forma que tienen estos elementos en el cuerpo $\mathbb{Z}_3[x]/\langle x^2+\bar{1}\rangle$.

Los elementos del cuerpo $\mathbb{Z}_3[x]/\langle x^2+\bar{1}\rangle$ son de la forma $f(x)+\langle x^2+\bar{1}\rangle$, donde $f(x)\in\mathbb{Z}_3[x]$.

Dados $f(x), (x^2 + \bar{1}) \in \mathbb{Z}_3[x]$, por el algoritmo de la división existen $q(x), r(x) \in \mathbb{Z}_3[x]$ tales que: $f(x) = q(x) \cdot (x^2 + \bar{1}) + r(x)$, sumando el neutro $I = \langle x^2 + \bar{1} \rangle$ del cuerpo, nos resulta:

$$f(x) + I = \left[q(x) \cdot \left(x^2 + \overline{1}\right) + I\right] + \left[r(x) + I\right]$$
$$f(x) + I = I + \left[r(x) + I\right]$$
$$f(x) + I = r(x) + I$$

Como $gr(r(x)) < gr(x^2 + \overline{1})$, lo que implica que gr(r(x)) = 0 o gr(r(x)) = 1.

(i) Si gr(r(x))=0, entonces es claro que r(x) son los elementos de \mathbb{Z}_3 , ya que $r(x)=\sum_{i=0}^0 a_i\cdot x^i=a_0\cdot x^0=a_0$, con $a_i\in\mathbb{Z}_3$, luego por definición $a_0\in\mathbb{Z}_3$ y estarán contenidos en el cuerpo $\mathbb{Z}_3[x]/\langle x^2+\bar{1}\rangle$.

(ii) Si gr(r(x))=1, entonces $r(x)=a\cdot x+b$, tal que $r(x)\in\mathbb{Z}_3[x]$ con $a,b\in\mathbb{Z}_3$, de (i) e (ii), los elementos de $\mathbb{Z}_3[x]$ / $\langle x^2+\overline{1}\rangle$ son de la forma

Lab[e]saM

 $\overline{h(x)} = (a \cdot x + b) + I$ (polinomios de grado menor que el grado del polinomio generador del ideal).

Luego, como $a, b \in \mathbb{Z}_3$, podemos obtener los siguientes polinomios que se pueden visualizar en la siguiente tabla, de acuerdo a la forma $(a \cdot x + b)$ con $a, b \in \mathbb{Z}_3$:

a b	$\bar{0}$	Ī	$\bar{2}$
ō	ō	Ī	2
Ī	$\overline{(x)}$	$\overline{(x+1)}$	$\overline{(x+2)}$
$\bar{2}$	$\overline{(2\cdot x)}$	$\overline{(2\cdot x+1)}$	$\overline{(2\cdot x+2)}$

Por lo tanto el cuerpo $\mathbb{Z}_3[x]/\langle x^2+\bar{1}\rangle$ posee 9 elementos, a saber:

$$\mathbb{Z}_{3}[x] / \langle x^{2} + \overline{1} \rangle = \left\{ \overline{0}, \overline{1}, \overline{2}, \overline{(x)}, \overline{(x+1)}, \overline{(x+2)}, \overline{(2 \cdot x)}, \overline{(2 \cdot x+1)}, \overline{(2 \cdot x+2)} \right\}.$$

Autoevaluación 13

- **1.-** Determine todos los polinomios irreducibles en $\mathbb{Z}_3[x]$.
- **2.-** Hallar el cuociente y el resto de la división de los siguientes polinomio en $\mathbb{Q}[x]$ y luego escriba f(x) usando el algoritmo de la división.

a)
$$f(x) = 5 \cdot x^6 - 3 \cdot x^3 + 18 \cdot x - 1$$
; $g(x) = 2 \cdot x^4 + 15 \cdot x - 3$

b)
$$f(x) = 10 \cdot x^8 - 2 \cdot x^2 + 6$$
; $g(x) = x^2 + 2$

- **3.-** Hallar el mcd entre $h(x) = x^6 4 \cdot x^3 + 1$ y $s(x) = 3 \cdot x^2 + 5 \cdot x 1$ tal que $h(x), s(x) \in \mathbb{Q}[x]$.
- **4.-** Hallar el mcd entre $h(x) = x^4 + 2 \cdot x^2 + 1$ y $s(x) = x^2 + 2$ tal que $h(x), s(x) \in \mathbb{Z}_3[x]$.
- **5.-** Pruebe la irreducibilidad del polinomio, $f(x) = x^3 + x + 2$ en $\mathbb{Z}_3[x]$ y en $\mathbb{Z}_5[x]$.

6.-
$$i \frac{\mathbb{Z}_{11}[x]}{\langle x^5 + \overline{7} \cdot x + \overline{7} \rangle}$$
 es un cuerpo?

7.- Encuentre el inverso de $f(x) = 4 \cdot x + 1$ tal que $f(x) \in \mathbb{Z}_7 / \langle x^2 + 1 \rangle$.