módulo 2:

2.1.- SUBGRUPOS

Este capitulo entrega las herramientas necesarias para determinar cuándo estamos en presencia de un *Subgrupo*, a través del "*Criterio para subgrupo*".

Estudiaremos también cuando un grupo o subgrupo es cíclico, lo que nos hace destacar que existen grupos que sin necesidad de ser cíclicos sus subgrupos si lo son o algunos de ellos. Aprenderemos también a determinar el orden de cualquier grupo y de sus elementos.

Definición 1: Dado (G,*) un grupo y H un subconjunto no vacío de G, diremos que (H,*) es un subgrupo de (G,*), si y solo si, $*: H \times H \to H$ satisface las propiedades de grupo.

2.1.1.- Notamos del ejercicio sobre el grupo geométrico de las transformaciones de un polígono regular que lo dejan invariante como tal, es decir (\mathcal{T}_{Λ} , ·) que sus **subgrupos propios** son los siguientes:

- $(H_1 = \{ R_0, R_1, R_2\}, \cdot)$
- $(H_2 = \{R_0, S_1\}, \cdot)$
- $(H_3 = \{ R_0, S_2 \}, \cdot)$
- $(H_4 = \{ R_0, S_3 \}, \cdot)$

2.1.2.- Los *subgrupos triviales* de un grupo son dos; el que contiene sólo al neutro del grupo y el grupo mismo. Del ejemplo del grupo (\mathcal{T}_{Δ} , ·), podemos decir que los siguientes son sus subgrupos triviales:

- $H_5 = (\{R_0\}, \cdot)$
- $H_6 = (\mathcal{T}_{\Delta}, .)$

Cabe destacar que además los subgrupos propios de (τ_{Δ}, \cdot) son abelianos en cambio (τ_{Δ}, \cdot) no lo es.

2.2.- Grupos y Subgrupos Cíclicos

Definición 2: Un grupo (G,*) se dice Cíclico si existe un elemento $g \in G$ tal que para cualquier elemento $x \in G$, existe un entero k tal que $x = g^k$. En tal caso (G,*) es el grupo cíclico generado por g, y a su vez, g se llama generador del grupo (G,*), y se denota por $G = \langle g \rangle$.

Los subgrupos propios de $\,(\,{\mathcal T}_{\Delta}\,,\,\cdot\,)\,$ son grupos cíclicos y abelianos, de ellos podemos decir que:

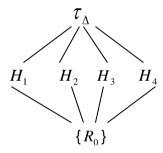
- H_1 = { R_0 , R_1 , R_2 } es cíclico generado por R_1 , también generado por R_2 , se denota por H_1 = $\langle R_1 \rangle$ = $\langle R_2 \rangle$
- $H_2 = \{R_0, S_1\}$ es cíclico generado por S_1 , que se denota por $H_2 = \langle S_1 \rangle$
- $H_3 = \{R_0, S_2\}$ es cíclico generado por S_2 , que se denota por $H_3 = \langle S_2 \rangle$
- $H_4 = \{R_0, S_3\}$ es cíclico generado por S_3 , que se denota por $H_4 = \langle S_3 \rangle$

Notemos que un elemento $g \in G$ es de orden k si $g^k = e_G$ (neutro), donde $k \in \mathbb{Z}$ es el menor entero positivo y se denota por |g| = k

¿Es (
$$\mathcal{T}_{\Lambda}$$
, ·) cíclico?

No lo es, pues ninguno de sus elementos es de orden 6, lo que quiere decir que no existe para cada elemento de (\mathcal{T}_{Δ} , ·) un menor entero positivo igual a 6 talque x^6 = R_0 donde $x\in\mathcal{T}_{\Delta}$.

A continuación se presenta la red de subgrupos de (τ_{Λ}, \cdot)



Considerando el grupo (\mathcal{T}_{Δ} , ·) podemos resolver la siguiente ecuación

$$\begin{array}{rclcrcl} (R_1 \cdot R_2)^5 \cdot x^2 \cdot S_1 \cdot S_2 \cdot S_3 & = & (S_2)^3 \\ (R_0)^5 \cdot x^2 \cdot (S_1 \cdot S_2) \cdot S_3 & = & S_2 \\ R_0 \cdot x^2 \cdot R_1 \cdot S_3 & = & S_2 \\ R_0 \cdot x^2 \cdot S_2 & = & S_2 \\ x^2 \cdot S_2 & = & S_2 \\ x^2 & = & R_0 \end{array}$$

Solución
$$x \in \{R_0, S_1, S_2, S_3\}$$

Este tipo de ejercicio es sencillo de responder al observar la tabla correspondiente.

Definición 3: Dado G un grupo cíclico finito generado por el elemento $g \in G$, diremos que el orden de cualquier elemento $x \in G$ es el menor entero positivo m talque $x^m = e$, donde e es el neutro del grupo G.

Observación: Como $x \in G = \langle g \rangle$, entonces $x = g^k$, $k \in \mathbb{Z}^+$, luego $|x| = ord(x) = m \implies (g^k)^m = e$.

Nota: g^k se refiere a notación multiplicativa.

Ejemplo 1: Determine el orden de los elementos de:

a)
$$(\tau_{\Lambda} \cdot)$$

Sabemos que el neutro en (\mathcal{T}_{Δ} , ·) es R_{0} , entonces:

$$(R_{0})^{1} = R_{0}$$

$$(R_{1})^{1} = R_{1}$$

$$(R_{2})^{1} = R_{2}$$

$$(R_{2})^{2} = R_{1}$$

$$(R_{2})^{3} = R_{0}$$

$$(S_1)^2 = R_0$$
 $(S_2)^2 = R_0$ $(S_3)^2 = R_0$
 $\therefore |S_1| = 2$ $\therefore |S_2| = 2$ $\therefore |S_3| = 2$

b)
$$\mathbb{Z}_2 \times \mathbb{Z}_4$$

 $\mathbb{Z}_2 \times \mathbb{Z}_4 = \{ (\bar{0}, \bar{0}) \}$
 $\{ (\bar{0}, \bar{0}), (\bar{0}, \bar{1}), (\bar{0}, \bar{2}), (\bar{0}, \bar{3}), (\bar{1}, \bar{0}), (\bar{1}, \bar{1}), (\bar{1}, \bar{2}), (\bar{1}, \bar{3}) \}$

Sabemos que el neutro en $\mathbb{Z}_2 \times \mathbb{Z}_4$ es $(\bar{0}, \bar{0})$, entonces:

Luego el orden de los elementos es:

$$\left| \begin{array}{c} \left(\bar{0}, \bar{1} \right) \right| = 4 \qquad \left| \begin{array}{c} \left(\bar{0}, \bar{2} \right) \right| = 2 \qquad \left| \begin{array}{c} \left(\bar{0}, \bar{3} \right) \right| = 4 \qquad \left| \begin{array}{c} \left(\bar{1}, \bar{0} \right) \right| = 2 \end{array} \right| \left(\bar{1}, \bar{1} \right) = 4$$

Teorema: Sea G un grupo cíclico finito, generado por g y |G|=n, entonces $g^n=e$ y los elementos de G son exactamente $g^1,g^2,...,g^{n-1},g^n=e$.

Demostración:

Supongamos por el contrario que existe $m \in \mathbb{Z}^+$, talque $g^m = e$, $\forall m < n$.

Sea $x \in G$, entonces $x = g^k$, $k \in \mathbb{Z}^+$, aplicando Algoritmo de la división a los enteros k y m (con m < k), entonces existen enteros q y r talque $k = m \ q + r$, donde $0 \le r < m$.

Luego con 0 < r < m se tiene:

$$g^{k} = g^{mq+r} = g^{mq} g^{r} = (g^{m})^{q} g^{r} = g^{r}$$
, donde $g^{m} = e$.

Esto nos dice que $x = g^r \in G$, es decir que el grupo G posee a lo menos m elementos, lo que es una contradicción con el orden de G, que posee n elementos.

Luego no existe m < n, talque g^m =e. En consecuencia, si |G| = n, $g^n = e$ donde $G = \langle g \rangle$.

Sólo falta verificar que todos los elementos de G son distintos, para ello supondremos que g^i , $g^j \in G$, con $g^i = g^j$, donde i < j < n.

Luego tenemos
$$g^i = g^j / g^{-i}$$
 $\Rightarrow e = g^{j-i}$, donde $0 < j-i < n$.

¡Es una contradicción!, por lo demostrado previamente. Luego todos los elementos de G son distintos.

Observación: Si G es un grupo cíclico finito de orden n, entonces n es el menor entero positivo talque $g^n = e$

2.3.- Criterio para Subgrupo

Hasta aquí hemos definido (G,*) como un grupo, y un subgrupo de el como una dupla (H,*), tal que $\varnothing \neq H \subseteq G$, donde (H,*) es un grupo. H es subgrupo de G, recordando que se denota por $H \leq G$.

Proposición: "Criterio para Subgrupo"

Dado (G,*) un grupo, y $\varnothing \neq H \subseteq G$, entonces, $H \leq G$ ssi:

- (i) Dados x, $y \in H \implies x * y \in H$
- (ii) Dado $x \in H \Rightarrow x^{-1} \in H$, (x^{-1} es el inverso de x en el grupo H).

Demostración:

 \Rightarrow] Hipótesis: $H \leq G$

Tesis: (i) Dados $x, y \in H \implies x * y \in H$

(ii) Dado $x \in H \Rightarrow x^{-1} \in H$, $(x^{-1} \text{ es el inverso de } x \text{ en el grupo } H$).

Por hipótesis se tiene que $H \le G$, esto quiere decir que H es un grupo, luego las condiciones (i) y (ii) se cumplen.

 \Leftarrow] Hipótesis: (i) Dados $x, y \in H \Rightarrow x * y \in H$

(ii) Dado $x \in H \implies x^{-1} \in H$, $(x^{-1} \text{ es el inverso de } x \text{ en } H)$

Tesis: $H \leq G$.

Aquí debemos demostrar que H es grupo con la operación del grupo G, como se satisfacen las condiciones (i) y (ii) por hipótesis sólo basta probar que "*" es asociativa en H y que \exists ! $e_G \in G$.

Como $H\subseteq G$, se cumple asociatividad pues se hereda del grupo G . Por ver que $e_G\in H$:

Tenemos por (ii) que si $x \in H \Rightarrow x^{-1} \in H$, $(x^{-1} \text{ es el inverso de } x)$ y por (i) que dados x, $x^{-1} \in H \Rightarrow x * x^{-1} \in H$ $\therefore e_G \in H$.

De esta manera queda demostrado el criterio para subgrupo.

Corolario: (del criterio de subgrupo)

Dado (G,*) un grupo y H un subconjunto no vacío de G, entonces, (H,*) es un subgrupo de (G,*) si y sólo si:

(i) $\forall x, y \in H : x * y^{-1} \in H$, $(y^{-1} \text{ es el inverso de } y \text{ en el grupo } H)$.

Ejemplo 1: Sea (G,\cdot) un grupo y $a \in G$ fijo, entonces:

$$H_a = \{ x \in G : x \cdot a = a \cdot x \} \leq G.$$

Demostración:

(i) Es claro que $H_a\subseteq G$, además $H_a\neq\varnothing$, pues $e_G\in H_a$, luego podemos asegurar que $e_G\cdot a=a\cdot e_G$.

(ii) Dados $x, y \in H_a$, por demostrar que $x \cdot y \in H_a$, es decir se debe verificar $(x \cdot y) \cdot a = a \cdot (x \cdot y)$.

Se tiene por asociatividad en G que:

$$(x \cdot y) \cdot a = x \cdot (y \cdot a)$$
; $y \in H_a$
 $= x \cdot (a \cdot y)$; asociatividad de G
 $= (x \cdot a) \cdot y$; $x \in H_a$
 $= (a \cdot x) \cdot y$
 $= a \cdot (x \cdot y)$

$$\therefore (x \cdot y) \in H_a$$

(iii) Dado $x \in H_a$, por demostrar que $x^{-1} \in H_a$, es decir se debe $\text{verificar } x^{-1} \cdot a = a \cdot x^{-1}.$

Sabemos que $x \in H_a$, esto es:

$$x \cdot a = a \cdot x$$
 ; x^{-1} por izquierda $x^{-1} \cdot (x \cdot a) = x^{-1} \cdot (a \cdot x)$; por asociatividad $a = x^{-1} \cdot a \cdot x$; x^{-1} por derecha $a \cdot x^{-1} = x^{-1} \cdot a$

$$\therefore x^{-1} \in H_a$$

En consecuencia de (i), (ii), (iii) tenemos que $H_a \leq G$

Ejemplo 2: Pruebe que $6\mathbb{Z} \leq 2\mathbb{Z} \leq \mathbb{Z}$ ($n\mathbb{Z}$ grupo aditivo)

Demostración:

(i) Claramente $6\mathbb{Z} \subseteq 2\mathbb{Z}$, ya que si $x \in 6\mathbb{Z}$

Entonces tenemos:

$$x = 6 \cdot k \qquad ; k \in \mathbb{Z}$$
$$= 2 \cdot (3 \cdot k) \quad ; 3 \cdot k \in \mathbb{Z}$$
$$\therefore x \in \mathbb{Z}$$

Además $6\mathbb{Z} \neq \emptyset$, pues $0_{\mathbb{Z}} \in 6\mathbb{Z}$.

(ii) Dados x, $y \in 6\mathbb{Z}$ por demostrar que $x + y \in 6\mathbb{Z}$, luego:

Si
$$x$$
, $y \in 6\mathbb{Z}$, tenemos $x = 6 \cdot k$, $y = 6 \cdot t \text{ con } k$, $t \in \mathbb{Z}$
Luego; $x + y = 6 \cdot (k+t)$; $(k+t) \in \mathbb{Z}$
 $\therefore x + y \in 6\mathbb{Z}$

(iii) Si $x \in 6\mathbb{Z}$ por demostrar que $-x \in 6\mathbb{Z}$, entonces:

Como $x \in 6$ se tiene:

$$x = 6 \cdot k \qquad ; \quad k \in \mathbb{Z}$$

$$-x = -6 \cdot k$$

$$= 6 \cdot (-k) \qquad ; -k \in \mathbb{Z}$$

$$\therefore -x \in 6 \mathbb{Z}$$

En consecuencia de (i), (ii), (iii) tenemos que $6\mathbb{Z} \le 2\mathbb{Z}$

Nota: En general $n \mathbb{Z} \leq \mathbb{Z}$

Ejemplo 3: Sea G un grupo abeliano, entonces $H := \{ x \in G : x^2 = e \} \le G$.

Demostración:

- (i) Claramente $H \neq \varnothing$, $H \subseteq G$, pues $e_G \in H$ esto es: $e^2 = e$.
- (ii) Si $x, y \in H$, por demostrar que $(x \cdot y) \in H$, se verifica que $(x \cdot y)^2 \in H$. Se tiene:

$$(x \cdot y)^2 = (x \cdot y) \cdot (; G \text{ es abeliano.}$$

$$x \cdot y)$$

$$= (x \cdot y) \cdot (y \cdot x)$$

$$= x \cdot (y \cdot y) \cdot x ; y \in H$$

$$= x \cdot e \cdot x$$

$$= x \cdot x ; x \in H$$

$$= e$$

$$\therefore (x \cdot y) \in H.$$

(iii) Si $x \in H$ entonces por demostrar que $x^{-1} = e$, esto es: $(x^{-1})^2 = e$ Se tiene:

$$(x^{-1})^2 = x^{-1} \cdot x^{-1}$$
 ; inverso del binomio
 $= (x \cdot x)^{-1}$; $x \in H$
 $= e^{-1}$
 $= e$
 $\therefore x^{-1} \in H$.

En consecuencia de (i), (ii), (iii), tenemos que $H \leq G$.

Ejemplo 4: Sea G un grupo, si H, $T \leq G$ entonces demostrar que $H \cap T \leq G$.

Demostración:

(i) Es claro que $H\cap T\subseteq G$, pues $H\subseteq G\wedge T\subseteq G$, además $H\cap T\neq\varnothing$, ya que $e_G\in H$ y además $e_G\in T$, entonces $e_G\in H\cap T$.

$$\therefore H \cap T \subseteq G$$

(ii) Si x, $y \in H \cap T$ por demostrar que $(x \cdot y) \in H \cap T$.

Por hipótesis se tiene:

$$x, y \in H \quad \land \quad x, y \in T$$

$$\Rightarrow (x \cdot y) \in H \text{ , pues } H \leq G \quad \land \quad \Rightarrow (x \cdot y) \in T \text{ , pues } T \leq G$$

$$\therefore (x \cdot y) \in H \cap T.$$

(iii) Dado $x \in H \cap T$, por demostrar que $x^{-1} \in H \cap T$: Si $x \in H \cap T$, se tiene;

$$x \in H \quad \land \quad x \in T$$
 pero $H \leq G \quad \land \quad T \leq G$

luego
$$x^{-1} \in H \quad \land \quad x^{-1} \in T$$

$$\therefore \quad x^{-1} \in H \cap T.$$

En consecuencia de (i), (ii), (iii), se tiene que $H \cap T \leq G$.

Nota: Generalizando; Sea G un grupo y { H_i : $i \in I$ } una familia de subgrupos de G . Entonces: $\bigcap_{i \in I} H_i \leq G$

Definición 4: $Z(G) := \{ x \in G : x \cdot y = y \cdot x, \forall y \in G \}$ es el centro del grupo G, o bien el centralizador del grupo en el grupo, se anota C(G, G).

Ejercicio: Sea G un grupo, entonces $Z(G) \leq G$.

Demostración:

(i) $Z(G) \subseteq G$ por definición de centralizador, además $Z(G) \neq \emptyset$, pues se tiene que $e_G \in Z(G)$, esto es; $e \cdot y = y \cdot e$; $\forall y \in G$.

$$\therefore Z(G) \subset G$$
.

(ii) Dados x, $y \in Z(G)$ por demostrar que: $x \cdot y \in Z(G)$, es decir se debe verificar $(x \cdot y) \cdot z = z \cdot (x \cdot y)$; $\forall z \in G$.

Se tiene:

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
 ; $y \in Z(G)$, $\forall z$
= $x \cdot (z \cdot y)$; associatividad en G
= $(x \cdot z) \cdot y$; $x \in Z(G)$, $\forall z$

Lable IsaM

=
$$(z \cdot x) \cdot y$$
 ; asociatividad en G
= $z \cdot (x \cdot y)$; $\forall z$
 $\therefore x \cdot y \in Z(G)$.

(iii) Dado $x \in Z(G)$, por demostrar que $x^{-1} \in Z(G)$, es decir:

$$x^{-1} \cdot z = z \cdot x^{-1}$$
 ; $\forall z \in G$

Sabemos que $x \cdot z = z \cdot x$, $\forall z \in G$ pues $x \in Z(G)$, entonces tenemos;

En consecuencia de (i), (ii), (iii), tenemos que $Z(G) \leq G$.

Proposición: Sea (G, \cdot) un grupo. Entonces $H = \{g^n : n \in \mathbb{Z}\}$ es un subgrupo de G.

Demostración:

Se tiene $H \subseteq G$ y $H \neq \emptyset$, donde $e_G \in H$

i) Dados $x, y \in H$, por demostrar $x \cdot y \in H$

Si
$$x, y \in H \implies x = g^k, y = g^r, \text{ donde } k, r \in \mathbb{Z}$$

Luego tenemos $x \cdot y = g^k \cdot g^r = g^{k+r} = g^{\lambda}$, donde $\lambda = k+r \in \mathbb{Z}$

$$\therefore x \cdot y \in H$$

ii) Dado $x \in H$ por demostrar $x^{-1} \in H$

Si
$$x \in H \implies x = g^k$$
, $k \in \mathbb{Z}$

Luego
$$x^{-1} = (g^k)^{-1} = g^{-k}$$
; $-k \in \mathbb{Z}$

$$\therefore x^{-1} \in H$$

Finalmente por i) y ii) podemos asegurar que $H \leq G$

Teorema: "Todo subgrupo de un grupo cíclico es cíclico"

Demostración: (John B. Fraleigh; "Algebra Abstracta"; página 58")

Hipótesis: $G = \langle g \rangle$ y $H \leq G$

Tesis: H es cíclico.

Si $H = \{e_G\}$, entonces H es cíclico (Trivial)

Consideremos a $H \neq \{e_G\}$, Como $H \leq G = \langle g \rangle$, los elementos de H son de la forma g^s y consideremos m el menor entero positivo tal que $g^m \in H$. Aplicamos "principio de la división" a s y m (con m < s) se tiene que existen enteros q y r tales que :

$$s = m \ q + r$$
; $con \ 0 \le r < m$
 $r = s - m \ q$; $0 < r < m$
 $\Rightarrow g^r = g^{s-mq} = g^s \cdot (g^m)^{-q}$

Como $g^s \in H$ y $g^m \in H$ con lo cual $(g^m)^{-q} \in H$ se tiene que:

 $g^s \cdot (g^m)^{-q} \in H$. Luego $g^r \in H$ donde 0 < r < m, esto es una contradicción, pues m es el menor entero positivo tal que $g^m \in H$.

Luego r=0, así s=m q. En consecuencia $g^s=g^{mq}=(g^m)^q\in H$

$$\therefore H = \langle g^m \rangle$$
 es cíclico.

Proposición: Si $G = \langle g \rangle$ es un grupo cíclico finito de orden n, entonces los subgrupos de G, son exactamente los subgrupos generados por g^m , donde "m divide a n", esto es:

Corolario:
$$H \le G = \langle g \rangle$$
, $\mid G \mid = n$
 $\Rightarrow H = \langle g^m \rangle$, donde \mid_n luego

Ejemplo 5:

$$\mathbb{Z}_{12} = \langle \bar{1} \rangle$$

$$\Rightarrow H = \langle \bar{1}^m \rangle \leq \mathbb{Z}_{12}, \text{ donde } |_{12}$$

$$m = 1 \quad ; \quad H_1 = \langle \bar{1} \rangle = \mathbb{Z}_{12}$$

$$m = 12 \quad ; \quad H_2 = \langle \bar{1}^{12} \rangle = \langle \bar{0} \rangle$$

$$Triviales$$

$$m = 2 \quad ; \quad H_3 = \langle \bar{1}^2 \rangle = \langle \bar{2} \rangle$$

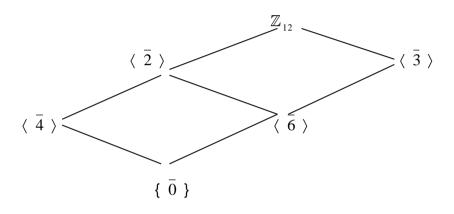
$$m = 3 \quad ; \quad H_4 = \langle \bar{1}^3 \rangle = \langle \bar{3} \rangle$$
Subgrupos
$$Subgrupos$$

Eduardo Cabrera de Arrizabalaga (profesor guía), Yesenia Briceño, Katherin Lara & Carolina Macaya (tesistas 2007)

LablelsaM

$$m=4$$
 ; $H_5=\sqrt{1}^4$ = $\sqrt{4}$ Propios $m=6$; $H_6=\sqrt{1}^6$ = $\sqrt{6}$

La red de subgrupos de \mathbb{Z}_{12}



2.4.- Guía nº2

1.- Establecer si H es subgrupo de G con la multiplicación ordinaria:

$$H = \{2^n / n \in \mathbb{Z}\}; G = Q - \{0\}$$

$$\xi(H = \{2^n / n \in \mathbb{Z}\}, \cdot) \leq G$$
?

(i) $H \neq \emptyset$

El neutro de $Q - \{0\}$ es 1, luego el neutro de H es $2^0 = 1$, pues $0 \in \mathbb{Z}$, entonces $H \neq \emptyset$

$$\therefore H \subseteq G$$

(ii) Sean $x,y \in H$, por demostrar: $x \cdot y \in H$.

si

$$x \in H \rightarrow x = 2^n$$

 $y \in H \rightarrow y = 2^m$
luego $x \cdot y = 2^n \cdot 2^m$
 $= 2^{n+m}, (m+n) \in \mathbb{Z}$

$$\therefore x \cdot y \in H$$

(iii) Si $x \in H$, por demostrar: $x^{-1} \in H$

si

LablelsaM

$$x \in H \rightarrow x = 2^{n} ,()^{-1}$$

$$x^{-1} = (2^{n})^{-1}$$

$$x^{-1} = 2^{-n} ,-n \in \mathbb{Z}$$

$$\therefore x^{-1} \in H$$

En consecuencia de (i), (ii) y (iii) $H \le G$

2.- Demostrar que todo subgrupo de un grupo abeliano es también abeliano.

Demostración:

Hipótesis: $H \leq G$, G abeliano

Tesis: *Hesabeliano*

 $\forall a,b \in H$, por demostrar $a \cdot b = b \cdot a$

Por hipótesis se tiene que $H \leq G$, luego $H \subseteq G$ entonces:

si $a,b \in H \subseteq G \rightarrow a,b \in G$, como G es grupo abeliano

 $a \cdot b \in G \rightarrow b \cdot a \in G$, lo que demuestra que *H* es abeliano

3.- Demostrar que todo subgrupo cíclico es abeliano.

Demostración:

Hipótesis: si $|G| = n \rightarrow g^n = e$, $g \in G$ talque $G = \langle g \rangle$, luego:

 $\forall x \in G, \exists k \in \mathbb{Z} \ tal \ que \ x = g^k$

Tesis: $\forall x, y \in G \text{ por demostrar } x \cdot y = y \cdot x$

$$si \ x \in G \quad \rightarrow \qquad \qquad x = g^k \qquad , k \in \mathbb{Z}$$
 $si \ y \in G \quad \rightarrow \qquad \qquad y = g^l \qquad , l \in \mathbb{Z}$

$$luego \qquad \qquad x \cdot y = g^k \cdot g^l$$

$$= g^{k+l} , k+l \in \mathbb{Z}, + \text{ en } \mathbb{Z} \text{ es}$$

$$= conmutativa$$

$$= g^{l+k}$$

$$= g^{l} \cdot g^{k}$$

$$\therefore x \cdot y = y \cdot x$$

4.- Encontrar todos los subgrupos de \mathbb{Z}_{60} ; confeccionar la red.

Los subgrupos de \mathbb{Z}_{60} . $H \leq \mathbb{Z}_{60}$, tal que $H = \langle \overline{u} \rangle$, donde u divide a 60, entonces $u \in \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30\}$

luego se tienen:

- subgrupos triviales de $\mathbb{Z}_{60}\!\colon \{ \overset{-}{0} \} \;\; \text{y} \;\; \mathbb{Z}_{60}$
- subgrupos propios de \mathbb{Z}_{60} :

$$H_1 = \langle \bar{1} \rangle = \mathbb{Z}_{60}$$

$$H_2 = \langle \overline{2} \rangle$$

$$H_3 = \langle \bar{3} \rangle$$

$$H_4 = \overline{\langle 4 \rangle}$$

$$H_5 = \langle \bar{5} \rangle$$

$$H_6 = \langle \overline{6} \rangle$$

$$H_7 = \langle \overline{10} \rangle$$

$$H_8 = \langle \overline{12} \rangle$$

$$H_9 = \langle \overline{15} \rangle$$

$$H_{10} = \langle \overline{20} \rangle$$

 $H_{11} =$



2.5.- Autoevaluación 2

1.- Establecer si H es subgrupo de G con la multiplicación ordinaria:

 $H = \{a+b\cdot\sqrt{2} / a, b \in Q \text{ no ambos nulos}\}$; $G = \mathbb{R}-\{0\}$.

- 2.- Encontrar todos los subgrupos del grupo constituido por los enteros múltiplos de 3.
- 3.- Si A y B son subgrupos de un grupo G. ¿Es $A \cup B \le G$?.

Lablelsa_M

- 4.- Si G es un grupo abeliano y $H \le G$, demostrar que $S(H) = \{x \in G/x^2 \in H\}$, es un subgrupo de G.
- 5.- Probar que $G = \{1, -1, i, -i\}$, con la multiplicación, es grupo cíclico. ¿Tiene G algún subgrupo cíclico?.
- 6.- Determinar el orden de cada elemento del grupo $G = \{1, -1, i, -i\}$, con la multiplicación.
- 7.- Encontrar todos los generadores de \mathbb{Z}_{60} .
- 8.- Probar que un grupo cíclico con un sólo generador tiene a lo más dos elementos.
- 9.- Demuestre que en un grupo G, $\forall a, b \in G$:
- (9.1) $ord(a) = ord(a^{-1})$
- (9.2) $ord(a \cdot b) = ord(b \cdot a)$
- 10.- Hacer una red de subgrupos de \mathbb{Z}_{64} , ¿Cuántos generadores posee?, ¿Cuál es el orden de cada uno de sus subgrupos?.