módulo 4:

4.1.- GRUPO DE PERMUTACIONES

Definición 1: Una permutación es una biyección definida en un conjunto cualquiera.

Sea X un conjunto no vacío, |X| = n, diremos que $(BiyX, \cdot)$ es un grupo donde $BiyX = \{ f : X \to X \mid f \text{ es biyectiva} \}$.

Este grupo recibe el nombre de *grupo de permutaciones* (o grupo de simetrías o de transformaciones).

Lo anotaremos como S_n , así diremos que (S_n,\cdot) es el grupo de permutaciones. Si $\sigma \in S_n$ entonces $\sigma \colon X \to X$ es biyección.

Nota: Sea $X = \{a_1, a_2, ..., a_n\}$ con $a_i \neq a_j$ con $i \neq j$ y si $\sigma \in S_n$, anotaremos a σ como:

$$\sigma = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ \sigma(a_1) & \sigma(a_2) & \dots & \sigma(a_n) \end{pmatrix} \in S_n$$

Donde $\sigma(a_i)$ es la imagen de a_i según σ

Observaciones:

- Si $\sigma \in S_n$ y $\rho \in S_n$, entonces $\sigma \rho \in S_n$
- El producto de dos permutaciones consiste en la composición de las bisecciones correspondientes y es no conmutativo es decir $\sigma\rho \neq \rho\sigma$.
- $|S_n| = n!$

Ejemplo 1: Sean
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix} \in S_5$$
 y $\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{pmatrix} \in S_5$

Procedemos a componer permutaciones tal como lo hacemos en funciones, es decir operamos de derecha a izquierda, luego obtenemos:

$$\sigma \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 5 & 3 \end{pmatrix} y \ \rho \sigma \ = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix}$$

En este ejemplo se aprecia claramente que $\sigma\rho \neq \rho\sigma$ lo que verifica la observación anterior.

Ejemplo 2: Determinar todos los elementos de S_2 y S_3 , donde $X = \{1, 2\}$ y $X = \{1, 2, 3\}$ respectivamente.

i) El grupo S_2 queda definido de la siguiente manera:

$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\} = \left\{ \int_0, \int_1 \right\}, \text{ donde } (S_2, \cdot) \cong \mathbb{Z}_2$$

Podemos hacer la tabla de doble entrada en la cual se verifica claramente que S_2 es un grupo conmutativo.

$$\begin{array}{c|cccc}
\cdot & \int_0 & \int_1 \\
\hline
\int_0 & \int_0 & \int_1 \\
\hline
\int_1 & \int_1 & \int_0
\end{array}$$

ii) El grupo S_3 queda definido de la siguiente manera:

$$S_{3} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \end{cases}, \quad \text{luego}$$

tenemos $S_3 = \{ \rho_0, \rho_1, \rho_2, \sigma_1, \sigma_2, \sigma_3 \}$, donde $(S_3, \cdot) \cong (D_3, \cdot)$

-	$ ho_0$	$ ho_{\scriptscriptstyle 1}$	$ ho_2$	$\sigma_{_{1}}$	$\sigma_{_2}$	$\sigma_{_3}$
$ ho_0$	$ ho_0$	$ ho_{\scriptscriptstyle 1}$	$ ho_2$	$\sigma_{_1}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{_3}$
					$\sigma_{_{1}}$	
$ ho_2$	$ ho_2$	$ ho_0$	$ ho_{\scriptscriptstyle 1}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{_3}$	$\sigma_{_{1}}$
$\sigma_{_{1}}$	$\sigma_{_{1}}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{_3}$	$ ho_0$	$ ho_{\scriptscriptstyle 1}$	$ ho_2$
					$ ho_0$	
$\sigma_{_3}$	σ_3	$\sigma_{_1}$	$\sigma_{_2}$	$ ho_{\scriptscriptstyle 1}$	$ ho_2$	$ ho_0$

Ejemplo 3: Describir el subgrupo de S_4 que es isomorfo con D_4

El subgrupo de S_4 será H que esta definido de la siguiente manera:

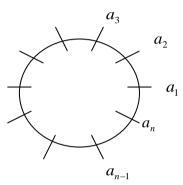
$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \right\}$$

$$H \cong D_{\scriptscriptstyle A} \text{ con } H \leq S_{\scriptscriptstyle A}$$

200[0]00

4.2.- Ciclo y Notación de Ciclo

Supongamos que n elementos de un conjunto A se distribuyen en una circunferencia de tal modo que el circulo rota en $\frac{2\pi}{n}$ radianes, donde $A = \{a_1, a_2, ..., a_n\}$.



Entonces la permutación
$$\sigma = \begin{pmatrix} a_1 & a_2 & a_3 & & a_{n-1} & a_n \\ a_2 & a_3 & a_4 & & a_n & a_1 \end{pmatrix} \in S_n$$
 ,

Esta permutación es un ciclo y se anotará en notación de ciclo, como sigue: $\sigma = \left(a_1 \ a_2 \ a_3 \ ... \ a_{\scriptscriptstyle n-1} \ a_{\scriptscriptstyle n}\right)$

Ejemplo 4: Del grupo S_4 consideremos lo siguiente:

- $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ = (1 2 3 4), es un ciclo.
- $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ = (1 3) (2 4), es un producto de ciclos.

Observación: Toda permutación puede ser un ciclo o bien un producto de ciclos.

Ejemplo 5: Escribir como ciclo (o producto de ciclo) los elementos de S_3 Considerando que:

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$$

Al escribirlo como ciclo o producto de ciclo obtenemos lo siguiente:

$$S_3 = \{(1)(2)(3), (123), (132), (23), (13), (12)\}$$

Observación: Cuando el elemento no esta, es fijo, es decir es su propia imagen. Del ejemplo 6 podemos rescatar que en (2 3) esta fijo el 1, en (1 3) esta fijo el 2, en (1 2) esta fijo el 3.

Notación: $Id_S = (1)(2)(3)...(n) = (1).$

Definición 2: Una transposición es un ciclo de longitud 2

Todo ciclo se puede expresar como un producto de transposiciones. Si $\sigma = (a_1 \ a_2 \ a_3 \ ... \ a_{n-1} \ a_n) \in S_n$ entonces $\sigma = (a_1 \ a_n) \ (a_1 \ a_{n-1}) ... (a_1 \ a_2)$.

Las permutaciones se clasifican según su paridad (o signo) que puede ser par (o signo +1) o bien impar (signo -1).

Definición 3:

Diremos que una permutación es par:

- Lab[e]sa
 - Si es un ciclo de longitud impar (se descompone en un número par de transposiciones)
 - Si es un producto de 2 ciclos de igual paridad.

Diremos que una permutación es impar si:

- Si es un ciclo de longitud par (se descompone en un número impar de transposiciones).
- Si se descompone en un producto de dos ciclos de distinta paridad.

Ejemplo 6: Determinar la paridad de $\rho = (1\ 2\ 3)(4\ 5\ 6) \in S_6$.

Como (1 2 3) es un ciclo de longitud impar, entonces (1 2 3) es par. Por otro lado como (4 5 6) es un ciclo de longitud impar entonces (4 5 6) es par. Luego ρ es par.

Ejemplo 7: Determinar la paridad de $\mu = (1 \ 2 \ 3 \ 4)(1 \ 2 \ 5 \ 6 \ 7 \ 8) \in S_8$.

Sabemos que μ_1 = (1 2 3 4) = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 5 & 6 & 7 & 8 \end{pmatrix}$, luego μ_1 es impar o

-1, pues (1 2 3 4) es un ciclo de longitud par.

También sabemos que μ_2 = (1 2 5 6 7 8) = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 4 & 6 & 7 & 8 & 1 \end{pmatrix}$ es

impar o -1, ya que $(1\ 2\ 5\ 6\ 7\ 8)$ es un ciclo de longitud par.

Pudiendo concluir de esto que μ es par, pues $-1 \cdot -1 = 1$

Ejemplo 8: Determinar la paridad de $\alpha = (1\ 2\ 3)(4\ 5) \in S_5$.

Claramente $(1\ 2\ 3)(4\ 5)$ es impar pues, $(1\ 2\ 3)$ es par, y $(4\ 5)$ es impar.

Nota:

- El producto de dos ciclos de igual paridad es par.
- El producto de dos ciclos de distinta paridad es impar.

Ejemplo 9: Determine la paridad de
$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 6 & 5 & 9 & 8 & 7 \end{pmatrix} \in S_9$$

Lo primero que debemos hacer es escribirla como ciclo, para poder determinar su paridad, $\rho = (1\ 3\ 4\ 2)(5\ 6)(7\ 9)(8)$

$$\Rightarrow \rho = (1342)(56)(79)$$

Observamos que $(1\ 3\ 4\ 2)$ es impar, $(5\ 6)$ es impar y $(7\ 9)$ también es impar, por lo que podemos concluir que ρ es impar.

Definición 4:

- $\sigma \in S_n$ es par si y sólo si $\prod_{i < j} \frac{\sigma(j) \sigma(i)}{j i} = +1$
- $\sigma \in S_n$ es impar si y sólo si $\prod_{i < j} \frac{\sigma(j) \sigma(i)}{j i} = -1$

Ejemplo 10: Consideremos $\sigma = (1\ 2\ 3) \in S_3$, determine su paridad.

Por definición se tiene:

$$\prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i} = \frac{\sigma(3) - \sigma(2)}{3 - 2} \cdot \frac{\sigma(3) - \sigma(1)}{3 - 1} \cdot \frac{\sigma(2) - \sigma(1)}{2 - 1}$$

$$= \frac{1-3}{1} \cdot \frac{1-2}{2} \cdot \frac{3-2}{1}$$

$$= -2 \cdot \frac{-1}{2} \cdot 1 = 1$$

$$\therefore \sigma \text{ es par}$$

4.3.- Guía nº5

1.- Determine la paridad de:

a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix} \in S_6$$

Descomponemos en producto de ciclos y obtenemos lo siguiente: $\sigma = \begin{pmatrix} 1 & 3 & 5 & 6 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \sigma_1 \cdot \sigma_2, \text{ donde claramente } \sigma_1 \text{ y } \sigma_2 \text{ son impar, por lo}$ que tenemos que σ es par, pues es un producto de igual paridad.

b)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 6 & 4 \end{pmatrix} \in S_6$$

Descomponemos en producto de ciclos obteniendo $\sigma = (1\ 3\ 2)(4\ 5\ 6) = \sigma_3 \cdot \sigma_4$, acá σ_3 y σ_4 son ciclos de longitud impar, lo que implica que σ_3 y σ_4 son par, luego podemos concluir que σ es un producto de igual paridad, por lo tanto es par.

2.- Determine el orden de:

a)
$$\sigma = (1 \ 2 \ 3) \in S_3$$

Para determinar el orden de σ debemos realizar lo siguiente:

$$\sigma = (1 \ 2 \ 3)$$

$$\sigma^{2} = (1 \ 2 \ 3) \cdot (1 \ 2 \ 3) = (1 \ 3 \ 2)$$

$$\sigma^{3} = (1 \ 3 \ 2) \cdot (1 \ 2 \ 3) = (1)(2)(3) = (1)$$

$$\therefore ord(\sigma) = 3$$

b)
$$\psi = (1\ 2) \cdot (4\ 5\ 6\ 7) \in S_7$$
, luego tenemos:
 $\psi = (1\ 2) \cdot (4\ 5\ 6\ 7)$
 $\psi^2 = (1\ 2) \cdot (4\ 5\ 6\ 7) \cdot (1\ 2) \cdot (4\ 5\ 6\ 7) = (4\ 6) \cdot (5\ 7)$
 $\psi^3 = (4\ 6) \cdot (5\ 7) \cdot (1\ 2) \cdot (4\ 5\ 6\ 7) = (1\ 2) \cdot (3) \cdot (4\ 7\ 6\ 5) = (1\ 2) \cdot (4\ 7\ 6\ 5)$
 $\psi^4 = (1\ 2) \cdot (4\ 7\ 6\ 5) \cdot (1\ 2) \cdot (4\ 5\ 6\ 7) = (1) \cdot (2) \cdot (3) \cdot (4) \cdot (5) \cdot (6) \cdot (7) = (1)$
 $\therefore ord(\psi) = 4$

3.- Demostrar que las cuatro permutaciones forman un grupo con la multiplicación de permutaciones.

Tenemos lo siguiente:

$$\alpha_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad \alpha_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

Escrito como ciclo
$$\alpha_0 = (1)$$
, $\alpha_1 = (1 \ 2 \ 3 \ 4)$, $\alpha_2 = (1 \ 3)(2 \ 4)$, $\alpha_3 = (1 \ 4 \ 3 \ 2)$

Procedemos a realizar la tabla

	α_0	$\alpha_{_{1}}$	α_2	α_3
$lpha_0$	α_0	$\alpha_{_{1}}$	α_2	α_3
$\alpha_{\scriptscriptstyle 1}$	$\alpha_{_1}$	$lpha_{\scriptscriptstyle 2}$	α_3	α_0
α_2	α_2	α_3	$lpha_0$	$\alpha_{\scriptscriptstyle 1}$
$\alpha_{\scriptscriptstyle 3}$	α_3	$lpha_0$	$\alpha_{_1}$	α_2

- El neutro de es $\alpha_0 = (1)$
- Es cerrada la operación
- El grupo es asociativo
- El inverso de $lpha_{\scriptscriptstyle 0}$ es $lpha_{\scriptscriptstyle 0}$
- El inverso de α_1 es α_3

- El inverso de α_2 es α_2
- El Inverso de α_3 es α_1

_

.. Las permutaciones con la operación multiplicación forman un grupo y además abeliano.

4.- En el grupo S_4 , resolver la ecuación:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \cdot x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Escribiendo las permutaciones como ciclo obtenemos:

$$(13)\cdot(24)\cdot x = (12)\cdot(34) / (13) \text{ izquierda}$$

$$(13)\cdot(13)\cdot(24)\cdot x = (13)\cdot(12)\cdot(34)$$

$$(1)\cdot(3)\cdot(24)\cdot x = (13)\cdot(12)\cdot(34)$$

$$(24)\cdot x = (13)\cdot(12)\cdot(34) / (24) \text{ izquierda}$$

$$(24)\cdot(24)\cdot x = (24)\cdot(13)\cdot(12)\cdot(34)$$

$$(2)\cdot(4)\cdot x = (24)\cdot(13)\cdot(12)\cdot(34)$$

$$x = (24)\cdot(13)\cdot(12)\cdot(34)$$

$$x = (14)\cdot(23)$$

$$\therefore x = (14)\cdot(23)$$

Lablelsa

4.4.- Autoevaluación 4

1.- Determine la paridad de:

a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 6 & 4 & 5 \end{pmatrix} \in S_6$$

b)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix} \in S_7$$

c)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix} \in S_5$$

d)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 1 & 6 & 4 \end{pmatrix} \in S_6$$

e)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 6 & 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 6 & 3 & 2 & 5 \end{pmatrix}$$

2.- Determine el orden de:

a)
$$\kappa = (2 \ 1 \ 4 \ 3) \in S_4$$

b)
$$\rho = (1\ 2)(2\ 3\ 5) \in S_5$$

c)
$$\alpha = (1\ 2)(3\ 4\ 5) \in S_5$$

3.- Verificar que en el grupo S_3 existen cuatro elementos que satisfacen la ecuación $x^2=e$ y tres elementos que satisfacen $y^3=e$.