módulo 7:

7.1.- SUBGRUPOS NORMALES

Luego de tener claros los conceptos de clases laterales o coclases, Se puede señalar que si las coclases derechas y las coclases izquierdas de un subgrupo en un grupo son iguales, se dice que el subgrupo, es un subgrupo normal (subgrupos invariantes).

Definición 1: Sea G un grupo y $H \leq G$. Diremos que H es un subgrupo normal (o invariante) de G, ssi gH = Hg, $\forall g \in G$.

Notación: $H \triangleleft G$ (H es subgrupo normal de G)

Observación:

$$gH = Hg ; \forall g \in G$$

$$\Leftrightarrow gHg^{-1} = H ; \forall g \in G$$

$$\Leftrightarrow gHg^{-1} \subseteq H ; \forall g \in G$$

$$\Leftrightarrow ghg^{-1} \in H ; \forall g \in G, \forall h \in H$$

Ejemplo 1: En ejercicios anteriores hemos visto que las coclases izquierdas y derechas de $H = \langle (1\ 2\ 3) \rangle$ en S_3 son iguales, esto es gH = Hg, $\forall g \in S_3$, entonces se puede afirmar que $H \triangleleft S_3$.

Ejemplo 2: Demostrar que $n\mathbb{Z} \triangleleft \mathbb{Z}$

pd.
$$g+n\mathbb{Z}-g\subseteq n\mathbb{Z}$$
; $\forall g\in\mathbb{Z}$
Si $x\in (g+n\mathbb{Z}-g)$
 $\Rightarrow x=g+nt-g$, con $t\in\mathbb{Z}, g\in\mathbb{Z}$
 $\Rightarrow x=nt$, con $t\in\mathbb{Z}$.
 $\therefore x\in n$ Z

Por lo tanto, $n\mathbb{Z} \triangleleft \mathbb{Z}$

Ejemplo 3: $\angle Z(G) \triangleleft G$?

Por ver si
$$g Z(G) g^{-1} \subset Z(G)$$
, $\forall g \in G$

dado
$$x \in g Z(G) g^{-1}$$
, entonces existe $h \in Z(G)$ tal que

$$x = g h g^{-1} ; h \in Z(G)$$
luego
$$x = h g g^{-1}$$

$$\Rightarrow x = h \in Z(G)$$

$$\therefore x \in Z(G)$$

$$\therefore Z(G) \triangleleft G$$

Teorema: Sea G un grupo y $H \leq G$, entonces son equivalentes:

a)
$$H \triangleleft G$$

b)
$$aHbH = abH$$
 ; $\forall a, b \in G$

Demostración:

 $a) \Rightarrow b)$

Hipótesis: $H \triangleleft G$

Tesis : aHbH = abH

i) Sea $x \in gH$ $\Rightarrow x = gh$; $h \in H$

Como $H \triangleleft G$ se tiene que

$$g \ h \ g^{-1} \in H$$
 ; $\forall \ g \in G$, $\forall \ h \in H$
 $\Rightarrow \exists \ h_1 \in H \text{ tal que } g \ h \ g^{-1} = h_1$
 $\Rightarrow g \ h = h_1 \ g$

Luego
$$x = g h = h_1 g \in Hg$$

$$\therefore x \in Hg$$

$$\therefore gH \subseteq Hg$$

ii) Sea $y \in Hg \implies \exists h \in H \text{ tal que } y = hg$

Como $H \triangleleft G$ se tiene

$$g^{-1} \ h \ (g^{-1})^{-1} \in H \quad , \ \forall \ g \in G \, , \ \forall \ h \in H$$
 esto es,
$$g^{-1} \ h \ (g^{-1})^{-1} = h_2 \quad , \ h_2 \in H$$

$$\Rightarrow \quad h \ (g^{-1})^{-1} = g \ h_2$$
 es decir,
$$\quad h \ g = g \ h_2; \ \forall \ g \in G \, , \ h \, , \ h_2 \in H$$
 Luego
$$\quad y = h \ g = g \ h_2 \in gH$$

$$\quad y \in gH$$

$$\therefore Hg \subseteq gH$$

 \therefore De i) y ii) se tiene que gH = Hg, $\forall g \in G$ cuando $H \triangleleft G$.

iii) Por demostrar $aHbH \subseteq abH$

Sea $x \in aHbH$

$$\Rightarrow \quad x \quad = \quad ah_1bh_2 \quad ; \quad h_1, \ h_2 \in H$$
 Como $gH = Hg$
Se tiene que $\exists \ h_3 \in H \text{ talque:}$
$$h_1b = b \ h_3$$
 Luego $x = ab \ h_3 \ h_2 \quad ; \ h_2, \ h_3 \in H$
$$= ab \ h_4 \qquad ; \quad h_4 \in H$$

 $\therefore x \in ab H$

iv) Por demostrar $abH \subseteq aHbH$

Dado
$$x \in abH$$

$$\Rightarrow x = abh ; h \in H, \text{con } h = h_1 h_2$$

$$= abh_1 h_2 ; \text{por hipótesis } bh_1 = h_3 b$$

$$= a h_3 b h_2$$

$$\therefore x \in aHbH$$

∴ De iii) y iv) se tiene que aHbH = abH.

b)
$$\rightarrow$$
 a)

Hipótesis: aHbH = abH;

Tesis : $H \triangleleft G$

Si $x \in g \ H \ g^{-1}$, por demostrar $x \in H$.

 $\therefore H \triangleleft G$

Si
$$x \in g \ H \ g^{-1} \implies x = g \ h \ g^{-1}$$
; $h \in H$

$$= g \ h \ g^{-1} \ e$$

$$= g \ h \ g^{-1} \ h_1 h_1^{-1} ; associando$$

$$= g \ g^{-1} h_2 \ h_1 h_1^{-1} ; por \ hipótesis$$

$$= h_3 ; h_3 \in H$$

$$\therefore x \in H$$

7.2.- Teorema: Sea G un grupo y $H \triangleleft G$, entonces (G/H), \cdot) es un grupo, llamado grupo cuociente o grupo factor.

Demostración:

Se define:

Por ver si la operación "•" esta bien definida en G_H .

Luego

$$x y = u h_1 v h_2 ; H \triangleleft G$$

$$x y = u v h_3 h_2 ; h_3 \in H$$

$$x y = u v h_4 ; h_4 \in H$$

$$(u v)^{-1} x y = h_4$$

$$\Rightarrow (uv)^{-1}(xy) \in H$$

$$\Rightarrow xy \equiv uv \mod H$$

$$\therefore xyH = uvH$$

∴ La operación "• " esta bien definida en G_H

asociatividad es trivial, por demostrar la existencia de elemento neutro en G_H^{\prime} .

Debe existir
$$xH \in G/H$$
, tal que $aHxH = xHaH = aH$, $\forall aH \in G/H$

Supongamos que
$$aHxH = aH$$
 ; como $H \triangleleft G$

$$axH = aH$$

$$a x a^{-1} = H$$

$$a x a^{-1} \in H$$

$$a x a^{-1} = h$$
 ; $h \in H$

$$a x = h a$$

$$x = a^{-1}ha$$
; $a \in G$, $h \in H$

Como $H \triangleleft G$, existe $h' \in H$ tal que h a = a h'

$$x = a^{-1}ah'$$

$$x = h'$$
; $h' \in H$

$$x \in H$$

Luego
$$xH = H$$
 ; con $x \in H$

(verifica ser neutro, además por la izquierda)

∴ El neutro en
$$G/H$$
 es H

Por demostrar la existencia de elemento inverso en $G_{\hspace{-0.1cm}/\hspace{-0.1cm}H}$.

$$\forall \ aH \ \in \ G \not/_{H} \ \text{, debe existir} \ uH \in G \not/_{H} \ \text{tal que} \ \ aHuH = uHaH = e_{G \not/_{H}} = H \ .$$

Supongamos que
$$aHuH = H$$

$$auH = H$$

$$au \in H$$

$$au = h ; h \in H$$

$$u = a^{-1}h ; h \in H, a^{-1} \in G$$

$$\therefore \text{ El inverso de } aH \text{ es } a^{-1}H$$

(se verifica también por la derecha)

$$\therefore ({}^G\!\!/_{\!\! H},\,\cdot\,)$$
 es un grupo.

7.3.- Guía nº 7

1.- Demostrar que todo subgrupo de un grupo abeliano es normal.

Hipótesis: $H \leq G$, donde G es abeliano,

Tesis : $H \triangleleft G$

Se sabe por teorema que: "Todo subgrupo de un grupo abeliano es abeliano", entonces por hipótesis H es abeliano, entonces basta demostrar que $H \ \Delta \ G$

Si
$$x \in g H g^{-1}$$
; P.d. $x \in H$

$$x = g h g^{-1}$$
 ; Con $h \in H$

$$x = h g g^{-1} H$$
 es abeliano

$$x = h$$

$$\therefore x \in H$$

$$\therefore H \triangleleft G$$

2.- Dado $f \in Hom(G, H)$, demostrar $ker(f) \triangleleft G$

Se tiene:
$$g \ Ker(f) \ g^{-1} \subseteq Ker(f) \quad \forall \ g \in G$$

Si
$$x \in g \operatorname{Ker}(f) g^{-1}$$
 P.D. $x \in \operatorname{Ker}(f)$

$$x = g k g^{-1}$$
; con $k \in Ker(f)$

$$f(x) = f(g k g^{-1})$$
; $f \in Homo$

$$f(x) = f(g)f(k) f(g^{-1})$$
; Pero $k \in Ker(f)$

$$f(x) = f(g) e_H f(g^{-1})$$
; $f \in Homo$

LablelsaM

$$f(x) = f(g g^{-1})$$

$$f(x) = f(e_g)$$

$$f(x) = e_H$$

$$\therefore x \in Ker(f)$$

$$\therefore Ker(f) \triangleleft G$$

3.- Si $H \Delta G$, demostrar que G/H es conmutativo ssi $\forall \ a,b \in G, \ ab\ a^{-1}b^{-1} \in H \ .$

 \Rightarrow] Hipótesis: ${}^{G}\!\!/_{\!H}$ es conmutativo.

Tesis : $a b a^{-1} b^{-1} \in H$; $\forall a, b \in G$,

Si G_H es conmutativo se tiene:

$$a H b H = b H a H$$
 $a b H = b a H$; $/(ba)^{-1}$
 $a b H (ba)^{-1} = H$; $H \triangleleft G$
 $a b (ba)^{-1} H_1 = H$
 $a b a^{-1} b^{-1} \in H$

$$\therefore aba^{-1}b^{-1} \in H$$

* De manera similar se demuestra \Leftarrow].

4.- Si $H \triangleleft G$, probar que:

$$\varphi: G \longrightarrow G/H$$

$$g \longrightarrow \varphi(g) := gH$$

Es un epimorfismo y demostrar que $Ker(\varphi) = g H$

• Por ver si φ es un Homomorfismo

 $\forall g, g_1 \in \varphi$, se tiene:

$$\varphi(g g_1) = g g_1 H , H \triangleleft G$$

$$= g H g_1 H$$

$$= \varphi(g) \varphi(g_1)$$

 φ es Homo.

• Por ver si φ es un epimorfismo.

$$\forall \ g \ H \in \left. \begin{array}{c} G \\ H \end{array} \right.$$
 debe existir un $a \in G$, tal que $\varphi(a) = gH$

Basta considerar un a = g

 φ es epimorfismo

• Por ver si $Ker(\varphi) = g H$

$$Ker(\varphi) = \{ g \in G / \varphi(g) = H \}$$

$$= \{ g \in G / g H = H \}$$

$$= \{ g \in G / g \in H \}$$

$$\therefore$$
 Ker $(f) = \{H\}$

5.- Si $H \leq G$ y $N \triangleleft G$, demostrar que $H \cap N \triangle H$

• Por demostrar que $H \cap N \leq H$

-Si
$$x, y \in H \cap N$$
 P.D. $xy \in H \cap N$
$$Si \ x \in H \cap N \implies x \in H \wedge x \in N$$

$$Si \ y \in H \cap N \implies y \in H \wedge y \in N$$

Como H y N son subgrupos de G, entonces

$$x\ y\ \in\ H\ \ \land\ x\ y\ \in\ N$$

Ahora debemos demostrar. H ∩ N ⊲ H, es decir,

Por demostrar que $h H \cap N h^{-1} \subset H \cap N$

Si
$$x \in h H \cap N h^{-1}$$

$$\Rightarrow x = h a h^{-1} \qquad ; \text{Con } a \in H \cap N$$

$$\Rightarrow x = h a h^{-1} \in H \qquad \text{Cuando } a \in H, y$$

$$\Rightarrow x = h a h^{-1} \in N \qquad \text{Cuando } a \in N, N \triangleleft G$$

$$\therefore x \in H \land x \in N$$

$$\therefore x \in H \cap N$$

$$\therefore H \cap N \triangleleft H$$

7.4.- Autoevaluación 7

- 1.-Si G es un grupo abeliano y $H \triangleleft G$ demostrar que G/H es abeliano ¿es verdadera la proposición reciproca?
- 2.- Demostrar que la intersección de dos subgrupos normales de un grupo ${\it G}$ es un subgrupo normal de ${\it G}$.
- 3.- Int $G := \{f: G \xrightarrow{Aut} G/f_g (x) = g \ x \ g^{-1}, \ \forall \ g \in G \}, \text{ entonces Int } G \triangleleft \text{ Aut } G.$
- 4.- $G' = \langle \{a^{-1} \ b^{-1} a \ b; \ a, b \in G\} \rangle \triangleleft G$. Donde G es un grupo, G' recibe el nombre de grupo derivado con $a^{-1} b^{-1} a b$ un conmutador de a y b ($ab = ba(a^{-1}b^{-1}a \ b)$).
- 5.- Demostrar: Si $G = \langle a \rangle \Rightarrow H \triangleleft G$, $\forall H \leq G$.
- 6.- Sean $H, K \triangleleft G y H \leq K$, entonces $K/H \triangleleft G/H$.