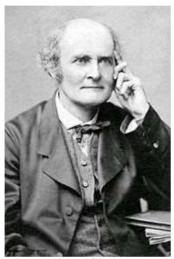


Datos Históricos



Arthur Cayley (1821 - 1895)

Los primeros indicios de matrices nacen en la antigua China por cuadrados mágicos 3 por 3, como atestigua el Lo Shu, y el término "matriz" nació en 1848 por J. J. Sylvester.

La notación matricial que nosotros conocemos actualmente, como forma abreviada de escribir un sistema de *m* ecuaciones lineales con *n* incógnitas, la introdujo Cayley en 1858.

Las matrices ahora se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar las aplicaciones lineales.

Teoría de Matrices "Matrices"

Definición

Sean I,J conjuntos de índices (subconjunto de \mathbb{Z}^+) tales que $I=\{1,2,...,m\}$ y $J=\{1,2,...,n\}$ y sea K un cuerpo, se define una función

$$f: I \times J \to K$$
 tal que $\forall (i, j) \in I \times J$, $f(i, j) = a_{ij}$

Llamaremos matriz de orden $m \times n$ al bloque ordenado formado por los valores de la función tal como sigue:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix}_{m \times n}$$

Observaciones:

- 1. Los términos a_{ij} con $i \in I = \{1,2,...,m\}, j \in J = \{1,2,...,n\}$ son llamados coeficientes de la matriz.
- 2. El término a_{ij} es un coeficiente de posición (i,j), es decir, ubicados en la fila i y la columna j de A
- 3. La matriz A de orden $m \times n$ tiene m filas y n columnas.

- 4. Podemos representar la matriz A como $[a_{ij}]_{(i,j)\in I\times J}\in K^{m\times n}$ o bien $[a_{ij}]_{m\times n}\in K^{m\times n}$, es una matriz de orden $m\times n$ con coeficientes en el campo K, que puede ser real o complejo.
- 5. Si m=n, decimos que $[a_{ij}]_{m\times n}$ es una matriz cuadrada de orden de $n\times n$. En caso contrario se dice rectangular.

 $K^{^{m\times n}} = \left\{ [a_{ij}]/a_{ij} \in K, \ i = \left\{1,2,...,m\right\}; \ j = \left\{1,2,...,n\right\} \right\} \quad \text{es el conjunto de todas las}$ matrices de orden $^{m\times n}$ con coeficientes en K.

Notación: $K^{m \times n}$, $M(K, m \times n)$, $M(m \times n, K)$

Matrices Especiales

1. Matriz Triangular

1.1 Matriz Triangular Superior

Una matriz $[a_{ij}] \in K^{n \times n}$ es triangular superior, ssi $a_{ij} = 0$ si i > j

Se define el conjunto de las Matrices Triangulares Superiores como:

$$T_n(K) = \left\{ [a_{ij}] \in K^{n \times n} / a_{ij} = 0 \quad si \ i > j \right\}$$

Gráficamente,

$$\begin{pmatrix} a_{11} & * & * \\ 0 & a_{22} & * \\ 0 & 0 & \ddots & a_{nn} \end{pmatrix}$$

1.2 Matriz Estrictamente Triangular Superior

Una matriz $[a_{ij}] \in K^{n \times n}$ es estrictamente triangular superior ssi $a_{ij} = 0$ si $i \ge j$ Se define el conjunto de las Matrices Estrictamente Triangulares Superiores como: $T_n\left(K\right) = \left\{[a_{ij}] \in K^{n \times n} \ / \ a_{ij} = 0 \quad si \ i \ge j\right\}$

Gráficamente,

$$\begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & \ddots 0 \end{pmatrix}$$

1.3 Matriz Triangular Inferior

Una matriz $[a_{ii}] \in K^{n \times n}$ es triangular inferior ssi $a_{ii} = 0$ si i < j

Se define el conjunto de las Matrices Triangulares Inferiores como: $T_n\left(K\right) = \left\{ \left[a_{ij}\right] \in K^{n\times n} \ / \ a_{ij} = 0 \quad si \ i < j \right\}$

Gráficamente,

$$\begin{pmatrix} a_{11} & 0 & 0 \\ * & a_{22} & 0 \\ * & * & \ddots \\ a_{nn} \end{pmatrix}$$

1.4 Matriz Estrictamente Triangular Inferior

Una matriz $[a_{ij}] \in K^{n \times n}$ es estrictamente triangular inferior ssi $a_{ij} = 0$ si $i \le j$

Se define el conjunto de Matrices Estrictamente Triangulares Inferiores como:

$$T_n(K) = \left\{ [a_{ij}] \in K^{n \times n} / a_{ij} = 0 \quad si \ i \le j \right\}$$

Gráficamente,

$$\begin{pmatrix} 0_{11} & 0 & 0 \\ * & 0_{22} & 0 \\ * & * & \ddots 0_{nn} \end{pmatrix}$$

Observación: La matriz estrictamente triangular superior y la matriz estrictamente triangular inferior, son matrices Nilpotentes. Es decir, una matriz A cualquiera es Nilpotente, si existe un menor entero positivo k, $k \in \mathbb{Z}^+$, tal que $A^k = \hat{0}$, donde $\hat{0} :=$ matriz nula, es decir, todos sus coeficientes son ceros.

2. Matriz Diagonal

La matriz $[a_{ij}] \in K^{n \times n}$ es diagonal ssi $a_{ij} = 0$ si $i \neq j$

Se define el conjunto de Matrices Diagonales como:

$$D_n(K) = \{ [a_{ij}] \in K^{n \times n} / a_{ij} = 0 \quad si \ i \neq j \}$$

Gráficamente,

$$\begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & \ddots & a_{nn} \end{pmatrix}_{n=0}$$

Los coeficientes a_{ii} de una matriz $A=[a_{ij}]\in K^{n\times n}$ son los coeficientes de la diagonal de A .

Notación: $D_n(K) = D(a_{11}, a_{22}, ..., a_{nn})$

3. Matriz Escalar

Una matriz $[a_{ij}] \in K^{n \times n}$ es diagonal si $a_{ij} = 0$ si $i \neq j$ \land $(a_{ii} = 1) \in K$ Se define el conjunto de Matrices Escalares como:

$$E_n(K) = \left\{ [a_{ij}] \in K^{n \times n} / \left(a_{ij} = 0 \quad si \quad i \neq j \right) \land (a_{ii} = \lambda) \in K \right\}$$

Gráficamente,

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \ddots \lambda \end{pmatrix}_{n \times n}$$

Observaciones:

- 1. Si $\lambda = 0$, tenemos la matriz nula.
- 2. Si $\lambda = 1$, tenemos la matriz identidad.
- 3. $N_n(K) \subseteq T_n(K) \subseteq K^{n \times n}$
- 4. $E_n(K) \subseteq D_n(K) \subseteq K^{n \times n}$

Leyes de Composición Interna

A continuación dotaremos a $K^{m \times n}$ o bien $K^{n \times n}$ de dos Leyes de Composición Interna (I.c.i.), a saber, Suma y Producto.

1. Suma

$$+: K^{m imes n} imes K^{m imes n} o K^{m imes n} ext{ tal que } orall [a_{ij}]_{m imes n}, [b_{ij}]_{m imes n} \in K^{m imes n},$$
 $(a_{ij})_{m imes n} + (b_{ij})_{m imes n} := (a_{ij} + b_{ij})_{m imes n},$

En particular, si
$$A=\left(a_{ij}\right)_{n\times n},\ B=\left(b_{ij}\right)_{n\times n}\in K^{n\times n},$$

$$A+B=\left(a_{ij}+b_{ij}\right)_{n\times n}\in K^{n\times n}$$

Ejemplo

$$A = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 0 & -1 \end{pmatrix}; B = \begin{pmatrix} -3 & 0 & 0 \\ 4 & 5 & 6 \end{pmatrix} \in IR^{2\times 3}$$
$$A + B = \begin{pmatrix} -1 & 3 & 5 \\ 5 & 5 & 5 \end{pmatrix}$$

Lab[e]saM Lin- Módulo 1: Matrices

1.1 Propiedad

 $(K^{m \times n}, +)$ es un Grupo, es decir cumple:

i. asociatividad

ii. elemento neutro

iii. elemento inverso

Demostraciones

i. Asociatividad

$$\forall \quad A = \left(a_{ij}\right)_{n \times n}, B = \left(b_{ij}\right)_{n \times n}, C = \left(c_{ij}\right)_{n \times n} \in K^{n \times n} \text{ se cumple que}$$

$$A + (B + C) = (A + B) + C$$

$$A + (B + C) = \left(a_{ij}\right)_{n \times n} + \left[\left(b_{ij}\right)_{n \times n} + \left(c_{ij}\right)_{n \times n}\right]$$

$$= \left(a_{ij}\right)_{n \times n} + \left(b_{ij} + c_{ij}\right)$$

$$= \left(a_{ij} + \left[b_{ij} + c_{ij}\right]\right)_{n \times n}; \text{ asociatividad en K}$$

$$= \left(\left[a_{ij} + b_{ij}\right] + c_{ij}\right)_{n \times n}$$

$$= \left(a_{ij} + b_{ij}\right)_{n \times n} + \left(c_{ij}\right)_{n \times n}$$

$$= \left[\left(a_{ij}\right)_{n \times n} + \left(b_{ij}\right)_{n \times n}\right] + \left(c_{ij}\right)_{n \times n}$$

$$\therefore A + (B + C) = (A + B) + C$$

Universidad de Playa Ancha

ii. Elemento neutro

$$\exists \left(x_{ij}\right)_{m \times n} \in K^{m \times n}, \ \forall \left(a_{ij}\right)_{m \times n} \in K^{m \times n} \text{ tal que}$$

$$\left(a_{ij}\right)_{m \times n} + \left(x_{ij}\right)_{m \times n} = \left(x_{ij}\right)_{m \times n} + \left(a_{ij}\right)_{m \times n} = \left(a_{ij}\right)_{m \times n}$$

Supongamos que

$$\begin{aligned} \left(a_{ij}\right)_{m\times n} + \left(x_{ij}\right)_{m\times n} &= \left(a_{ij}\right)_{m\times n} \\ \text{Entonces, } \left(a_{ij} + x_{ij}\right)_{m\times n} &= \left(a_{ij}\right)_{m\times n} \\ \Rightarrow & a_{ij} + x_{ij} &= a_{ij} \;\; ; \forall \;\; i=1,\dots m, \quad j=1,\dots n, \quad a_{ij}, x_{ij} \in K(cuerpo) \\ \text{Luego} & x_{ij} &= 0 \;\; ; \;\; \forall \quad i=1,\dots,m \quad , \;\; j=1,\dots,n \\ & \therefore \left(x_{ij}\right)_{m\times n} &= \left(0\right)_{m\times n} \; , \; \text{es el neutro aditivo en } K^{m\times n} \end{aligned}$$

Observación: $(0)_{m \times n}$ es llamado matriz nula.

iii. Elemento inverso aditivo (opuesto):

$$\forall \quad \left(a_{ij}\right)_{m\times n} \in K^{m\times n}, \ \exists \quad \left(y_{ij}\right)_{m\times n} \in K^{m\times n} \ \text{tal que}$$

$$\left(a_{ij}\right)_{m\times n} + \left(y_{ij}\right)_{m\times n} = \left(y_{ij}\right)_{m\times n} + \left(a_{ij}\right)_{m\times n} = \left(0\right)_{m\times n}$$
 Supongamos que
$$\left(a_{ij}\right)_{m\times n} + \left(y_{ij}\right)_{m\times n} = \left(0\right)_{m\times n}$$
 Entonces,
$$\left(a_{ij} + y_{ij}\right)_{m\times n} = \left(0\right)_{m\times n}$$

$$\Rightarrow \qquad a_{ij} + y_{ij} = 0 \ ; \ \forall \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

$$\therefore \quad \left(y_{ij}\right)_{m\times n} = \left(-a_{ij}\right)_{m\times n}, \text{ es el inverso aditivo en } K^{m\times n}.$$

Quedan demostrados los puntos i, ii y iii, lo que verifica la propiedad.

Observaciones:

- 1. Si además de verificar asociatividad, existencia de elemento neutro y existencia de elemento inverso, se verifica conmutatividad, diremos que $(K^{m\times n},+)$ es un Grupo Abeliano.
- 2. En particular, para m = n se tiene que $(K^{n \times n}, +)$ es un Grupo Abeliano.

Queda como ejercicio para el lector verificar conmutatividad.

2. Producto

•: Dados $A = (a_{ij})_{m \times n} \in K^{m \times n} \wedge B = (b_{jl})_{n \times p} \in K^{n \times p}$, se define:

$$AB = \left(c_{il}
ight)_{m imes p} \in K^{m imes p}$$
 , donde $c_{il} = \sum_{j=1}^n a_{ij} \cdot b_{jl}$

Ejemplo

(1)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}; B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in K^{2\times 2}$$

$$AB = (c_{ij})_{2\times 2}$$
, donde $C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$

Luego,
$$c_{11} = \sum_{k=1}^{2} a_{1k} \cdot b_{k1} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21}$$

$$c_{12} = \sum_{k=1}^{2} a_{1k} \cdot b_{k1} = a_{11} \cdot b_{12} + a_{12} \cdot b_{22}$$

$$c_{21} = \sum_{k=1}^{2} a_{2k} \cdot b_{k1} = a_{21} \cdot b_{11} + a_{22} \cdot b_{21}$$

$$c_{22} = \sum_{k=1}^{2} a_{2k} \cdot b_{k2} = a_{21} \cdot b_{12} + a_{22} \cdot b_{22}$$

Lab[e]saM Lin- Módulo 1: Matrices

(2) Sean
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$$
; $B = \begin{pmatrix} -3 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{2\times 2}$, calcular AB .

$$AB = \begin{pmatrix} 1 \cdot (-3) + (-1) \cdot 1 & 1 \cdot 1 + (-1) \cdot 1 \\ 2 \cdot (-3) + 0 \cdot 1 & 2 \cdot 1 + 0 \cdot 1 \end{pmatrix}$$

$$AB = \begin{pmatrix} -4 & 0 \\ -6 & 2 \end{pmatrix}$$

Generalizando, si $A \in K^{m \times n}$ y $B \in K^{p \times q}$, diremos que existe la matriz $AB \in K^{m \times q}$ si y sólo sí n=p.

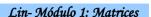
Ejemplo

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 4 \end{pmatrix}_{2\times 3}; B = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 1 \\ -1 & 2 & 3 \end{pmatrix}_{3\times 3}$$

$$AB = \begin{pmatrix} -1 & 4 & 7 \\ -11 & 11 & 14 \end{pmatrix}_{2\times 3}$$

Nota: Si $A = (a_{ij})_{n \times n} \in K^{n \times n}$ $y B = (b_{ij})_{n \times n} \in K^{n \times n}$, se tiene:

$$AB = (c_{ij})_{n \times n} \in K^{n \times n}$$
, donde $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$



2.1 Propiedades

2.1.1 El producto de matrices es asociativo

Sea
$$A \in K^{m \times n}, B \in K^{n \times p}, C \in K^{p \times q}$$
, se verifica que: $A(BC) = (AB)C$

- **2.1.2** El producto de matrices es no conmutativo, es decir, $AB \neq BA$.
- 2.1.3 Las matrices son con divisores de cero, es decir, si

$$AB = \stackrel{\circ}{0} \Rightarrow A = \stackrel{\circ}{0} \lor B = \stackrel{\circ}{0}.$$

2.1.4 El producto de matrices es no cancelativo, es decir, si $AC = BC \Rightarrow A = B$.

2.1.5 El producto de matrices verifica distributividad, es decir, si $A \in K^{m \times n}, B \in K^{n \times q}, C \in K^{n \times q}$ se cumple que:

$$A(B+C)=AB+AC$$
 distributividad por la izquierda

O bien si $A \in K^{q \times n}, B \in K^{n \times q}, C \in K^{n \times q}$ se cumple que:

$$(B+C)A = BA+CA$$
 distributividad por la derecha

Observación: Si $A, B, C \in K^{n \times n}$ entonces se verifica distributividad por la izquierda y distributividad por la derecha.

Demostración 2.1.1

Sea
$$A = (a_{ij})_{m \times n} \in K^{m \times n}$$
; $B = (b_{jk})_{n \times p} \in K^{n \times p}$; $C = (c_{kl})_{p \times q} \in K^{p \times q}$, entonces:

$$(AB)C = ((a_{ij})(b_{jk}))(c_{kl})$$

$$= \left(\sum_{j=1}^{n} a_{ij} b_{jk}\right) (c_{kl})$$

$$= (d_{ik})((c_{kl}))$$

$$=(h_{il})$$

$$=\sum_{k=1}^{p}d_{ik}c_{kl}$$

$$=\sum_{k=1}^{p}\left(\sum_{i=1}^{n}a_{ij}b_{jk}\right)c_{kl}$$

$$= \sum_{k=1}^{p} \sum_{i=1}^{n} a_{ij} \left(b_{jk} c_{kl} \right)$$

$$= \sum_{i=1}^{n} a_{ij} \sum_{k=1}^{p} b_{jk} c_{kl}$$

$$=A(BC)$$

Ejemplo propiedad 2.1.2

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$
, donde $C = AB$

$$D = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$
, donde $D = BA$

Como se observa $C \neq D$.

Ejemplo propiedad 2.1.3

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, donde $C = AB$

Como se observa $A \neq 0$ \wedge $A \neq 0$, sin embargo, C = 0

Ejemplo propiedad 2.1.4

Sean

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 1 & 9 \\ 0 & 0 \end{pmatrix}; C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$AC = BC$$

$$\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} 1 & 9 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\therefore AC = BC \Rightarrow A = B$$

Ley de Composición Externa

Ya hemos visto que $(K^{m \times n}, +)$ es un Grupo Abeliano. Ahora definiremos una Ley de Composición Externa (I.c.e.) en $K^{m \times n}$ tal como:

•:
$$K \times K^{m \times n} \to K^{m \times n}$$
 tal que $k \bullet (a_{ij})_{m \times n} := (k \ a_{ij})_{m \times n}$

3. Propiedades

3.1
$$(k+\lambda) \bullet A = k \bullet A + \lambda \bullet A$$
; $\forall k, \lambda \in K, \forall k, \lambda \in K, \forall$

3.2
$$k \bullet (A+B) = k \bullet A + k \bullet B$$
; $\forall k \in K, \forall A, B \in K^{m \times n}$

3.3
$$k \bullet (\lambda \bullet A) = (k \cdot \lambda) \bullet A$$
; $\forall k, \lambda \in K, \forall A \in K^{m \times n}$

3.4 $1_k \bullet A = A$; $\forall A \in K^{m \times n}$, 1_k neutro multiplicativo de K.

Demostración 3.2

Sean
$$A = (a_{ij})_{m \times n}$$
; $B = (b_{ij})_{m \times n} \in K^{m \times n}$

En la posición (i, j) de A + B se encuentra el término $a_{ij} + b_{ij}$.

En la posición (i, j) de $k \bullet (A + B)$ se encuentra el término $k \cdot (a_{ij} + b_{ij})$.

Por otro lado, en la posición (i, j) de $k \cdot A$ se encuentra el término $k \cdot a_{ij}$.

En la posición (i, j) de $k \bullet B$ se encuentra el término $k \cdot b_{ij}$.

En la posición (i,j) de $k \bullet A + k \bullet B$ se encuentra el término $k \cdot a_{ij} + k \cdot b_{ij}$.

Luego, por la distributividad de K, se tiene que $k \cdot a_{ij} + k \cdot b_{ij} = k \cdot (a_{ij} + b_{ij})$, que es el elemento de posición (i, j) de $k \cdot (A + B)$.

Demostración 3.4

Con las propiedades descritas en 1.1 y 3, podemos decir que $K^{m \times n}$ es un Espacio Vectorial sobre el campo K, o bien, se dice que $K^{m \times n}$ es un K Espacio Vectorial.

4. Otras propiedades

4.1
$$\forall A \in K^{m \times n}$$
, se verifica que $0 \bullet A = 0$

4.2
$$\forall k \in K$$
, se verifica que $k \bullet \hat{0} = \hat{0}$

4.3 Sea
$$k \in K$$
, $A \in K^{m \times n}$, $k \bullet A = \hat{0}$ **ssi** $k = 0_K$ o $A = \hat{0}$

Tipos de Matrices

1. Matriz Traspuesta

Dado $A = \left(a_{ij}\right)_{m \times n} \in K^{m \times n}$, diremos que $A^t := \left(a_{ji}\right)_{n \times m} \in K^{n \times m}$ es la matriz traspuesta de A.

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{pmatrix}_{2 \times 3} \xrightarrow{t} A^{t} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 4 \end{pmatrix}$$

1. Propiedades

1.1
$$(A^t)^t = A$$
; $\forall A \in K^{m \times n}$

1.2
$$(A+B)^t = A^t + B^t$$
; $\forall A, B \in K^{m \times n}$

1.3
$$(AB)^t = B^t A^t$$
; $\forall A \in K^{m \times n}$, $\forall B \in K^{n \times q}$

1.4
$$(A^t)^{-1} = (A^{-1})^t$$
; $\forall A \in K^{n \times n}$

Observación (a la propiedad 1.4): Una matriz $A \in K^{n \times n}$ es invertible si y sólo sí existe una matriz $A^{-1} \in K^{n \times n}$, llamada inversa de A, tal que: $A \cdot A^{-1} = A^{-1} \cdot A = I_n$

Nota: $I_n^t = I_n$, donde $I_n \in K^{n \times n}$

Demostración 1.2

Sean
$$A = (a_{ij})_{m \times n}$$
; $B = (b_{ij})_{m \times n}$

En la posición $\left(i,j\right)$ de A+B se encuentra el término $a_{ij}+b_{ij}$

En la posición (j,i) de $(A+B)^t$ se encuentra el término $a_{ij}+b_{ij}$

Por otro lado, en la posición (i,j) de A se encuentra el término a_{ij} , que es el mismo elemento que se encuentra en la posición (j,i) de A^t .

En la posición (i,j) de B se encuentra el término b_{ij} , que es el mismo elemento que se encuentra en la posición (j,i) de B'.

Luego, en la posición (j,i) de $A^t + B^t$, se encuentra el término $a_{ij} + b_{ij}$, que es el mismo coeficiente que se encuentra en la posición (j,i) de $(A+B)^t$.

$$\therefore (A+B)^t = A^t + B^t$$

Lab[e]saM

Demostración 1.4

Sabemos que, sea $A\in K^{n\times n}$ invertible \iff \exists $A^{-1}\in K^{n\times n}$ tal que $A\cdot A^{-1}=A^{-1}\cdot A=I_n$

Supongamos que $A \cdot A^{-1} = I_n$ / aplicando traspuesta

 $(A \cdot A^{-1})' = I_n^t$ / aplicando propiedad 1.3

(a)
$$(A^{-1})^t \cdot A^t = I_n$$

Por otro lado, si $A^{-1} \cdot A = I_n$ / aplicando traspuesta

 $(A^{-1} \cdot A)^t = I_n^t$ / aplicando propiedad 1.3

(b)
$$A^t \cdot (A^{-1})^t = I_n$$

Luego de (a) y (b), podemos concluir que la inversa de A^t es $\left(A^{-1}\right)^t$.

$$\therefore (A^t)^{-1} = (A^{-1})^t$$

2. Matriz Simétrica

Una matriz $A \in K^{n \times n}$ es simétrica si y sólo sí $A = A^t$.

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix} \xrightarrow{t} A^{t} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix}$$

$$\therefore A = A^t$$

2. Propiedades

2.1 Si $A \in K^{n \times n}$ es simétrica y $k \in K$ entonces $k \cdot A$ es simétrica.

2.2 Dado $A \in K^{n \times n}$ entonces $A + A^t$ es simétrica.

Demostración 2.1

Sabemos que si $k \cdot A$ es simétrica entonces $k \cdot A = (k \cdot A)^k$

Por propiedad 1.3 de traspuesta se tiene $(k \cdot A)^t = k \cdot A^t$

:: $A^t = A$, pues A es simétrica

$$\Rightarrow (k \cdot A)^t = k \cdot A$$

 $\therefore k \cdot A$ es simétrica

Demostración 2.2

Sabemos que si $A + A^t$ es simétrica entonces $A + A^t = (A + A^t)^t$

Por propiedad 1.2 de traspuesta se tiene $(A + A^t)^t = A^t + (A^t)^t$

$$\Rightarrow (A + A^t)^t = A^t + A$$

$$\Rightarrow (A + A^t)^{\dagger} = A + A^t$$

 $\therefore A + A^t$ es simétrica

3. Matriz Antisimétrica

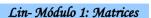
Dado $A \in K^{m \times n}$, diremos que A es Antisimétrica, sí y sólo sí:

$$A = -A^t$$

Ejemplo

$$A = \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix} \xrightarrow{t} \begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix} \xrightarrow{\cdot (-1)} \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix} = -A^{t}$$

Observación: Los coeficientes de la diagonal de la matriz antisimétrica son ceros, o bien, es nula.



3. Propiedades

3.1 Si $A \in K^{m \times n}$ es antisimétrica, entonces kA es antisimétrica con $k \in K - \{0\}$.

3.2 Dado $A \in K^{m \times n}$ se verifica que $A - A^t$ es antisimétrica.

Demostración 3.1

Por demostrar que kA es antisimétrica cuando A es $kA = -(kA)^t$ antisimétrica, esto es:

En efecto:

$$-(kA)^{t} = -(k \cdot (A^{t}))$$
$$= (-k) \cdot (-A) = k \cdot A$$

Demostración 3.2

Por demostrar que $A - A^t$ es antisimétrica, es decir:

$$(A-A^t) = -(A-A^t)^t$$

Se tiene:

$$-(A-A^{t})^{t} = -A^{t} + (A^{t})^{t}$$

$$= -A^{t} + A$$

$$= A - A^{t}$$
; Conmutatividad de la suma

4. Matriz Conjugada

Sea $A = \left[a_{ij}\right]_{m \times n} \in \mathbb{C}^{m \times n}$, diremos que $\overline{A} := \left[a_{ij}\right]_{m \times n} \in \mathbb{C}^{m \times n}$ es la Matriz Conjugada de A, donde \overline{a}_{ij} es el conjugado de a_{ij} (en \mathbb{C}).

Ejemplo

Lin- Módulo 1: Matrices

$$A = \begin{pmatrix} 2+i & i & 1-i \\ 2 & 3 & i \\ 0 & -i & 1+i \end{pmatrix}_{3\times 3} \in \mathbb{C}^{3\times 3} \implies \overline{A} = \begin{pmatrix} 2-i & -i & 1+i \\ 2 & 3 & -i \\ 0 & i & 1-i \end{pmatrix}_{3\times 3} \in \mathbb{C}^{3\times 3}$$

5. Matriz Hermítica

Dado $A \in \mathbb{C}^{m \times n}$, diremos que A es hermítica sí y sólo si, $A = (\overline{A})^t$.

Ejemplo

$$A = \begin{pmatrix} 1 & -i & 2-i \\ i & 3 & 1-i \\ 2+i & 1+i & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & i & 2+i \\ -i & 3 & 1+i \\ 2-i & 1-i & 4 \end{pmatrix} t \begin{pmatrix} 1 & -i & 2-i \\ i & 3 & 1-i \\ 2+i & 1+i & 4 \end{pmatrix}$$

Observación: En toda matriz hermítica los coeficientes de la diagonal son reales.

6. Matriz Involutiva

 $A \in K^{n \times n}$ regular (invertible) es *involutiva* ssi $A^{-1} = A$ ssi $A^2 = I_n$

7. Matriz Ortogonal

 $A \in K^{n \times n}$ regular (invertible) es ortogonal ssi $A^{-1} = A^{t}$ ssi $AA^{t} = I_{n}$.

8. Matriz Unitaria

 $A \in K^{n \times n}$ regular (invertible) es *unitaria* ssi $A^{-1} = A^*$ donde $A^* = (\overline{A})^t$

9. Matriz Antihermítica

La matriz $A \in K^{nxn}$ es antihermítica ssi $A = -A^*$

Note que
$$(\overline{A})^t = (\overline{A}^t)$$
, con $A \in K^{m \times n}$

Ejercicio. Par cada una de las matrices definidas en 6, 7, 8 y 9 construya un ejemplo.

Operaciones Elementales Sobre una Matriz

Existen sólo tres operaciones elementales (filas o columnas) permitidas sobre una matriz; a saber:

Operaciones Elementales Filas (O. E. F.)

1.- Intercambiar filas: Intercambiar la fila i por la fila j.

$$f_i \leftrightarrow f_j$$
, o bien, f_{ij}

2.- Cambiar la fila i por k veces la fila i; con $k \neq 0$

$$f_i \leftrightarrow kf_i$$
, o bien, $f_i(k)$

3.- Cambiar la fila i por k veces la fila j más la fila i , con $k \neq 0$

$$f_i \leftrightarrow f_i + kf_j$$
, o bien, $f_{ij}(k)$

Observación: De manera similar se definen las Operaciones Elementales Columnas, esto es:

1.-
$$c_i \leftrightarrow c_i; c_{ii}$$

2.-
$$c_i \leftrightarrow kc_i; c_i(k)$$

Lab[e]saM Lin- Módulo 1: Matrices

3.-
$$c_i \leftrightarrow c_i + k(c_i); c_{ij}(k)$$

Ejemplo

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tilde{f}_{12} \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \tilde{f}_{2(-6)} \begin{pmatrix} 3 & 4 \\ -6 & -12 \end{pmatrix}$$

o bien

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tilde{f}_{2(-6)} \begin{pmatrix} 1 & 2 \\ -18 & -24 \end{pmatrix}$$

o bien

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tilde{f}_{12(-3)} \begin{pmatrix} -5 & -10 \\ 3 & 4 \end{pmatrix}$$

Ejemplo

Transformar, si es posible, mediante O.E.F., la matriz dada en la matriz I_2 .

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

Luego,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tilde{f}_{21(-3)} \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix} \tilde{f}_{12(1)} \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \tilde{f}_{2\left(\frac{1}{2}\right)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

De manera similar podemos trasformar la misma matriz vía O.E.C.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \tilde{c}_{21(-2)} \begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix} \tilde{c}_{2(\frac{-1}{2})} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \tilde{c}_{12(3)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Universidad de Playa Ancha

,

6. Matriz Equivalente

Matriz equivalente por filas:

Dos matrices A,B son equivalentes por filas las que anotamos: A \tilde{f} B, si existe una frecuencia de matrices elementales:

$$F_1, F_2, \dots, F_k$$
 tales que $F_k * \dots * F_2 * F_1 * A = B$

Nota: Si $A, B \in K^{m \times n}$ son matrices elementales, entonces

$$F_i$$
 $(i=1...k)$ son de orden $m \times n$

$$(F_i \in K^{m \times n}, \forall i = 1...k)$$

Ejemplo

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{12} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tilde{f}_{12} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

7. Matriz Elemental

Diremos que una matriz es elemental (M.E.) si proviene de la Identidad al efectuar a ésta una y sólo una operación elemental fila (columna).

Ejemplo

Lab[e]saM Lin- Módulo 1: Matrices

1.-
$$egin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, es Matriz Elemental que proviene de I_2 al efectuar la OEF \widetilde{f}_{12}

$$\text{2.-} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tilde{f}_{12(1)} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ es M.E. }$$

3.- ¿Es M.E.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
? . No, porque proviene de I_3 con más de una

operación.

Nota:

- 1.- El producto de matrices elementales no necesariamente es Matriz Elemental.
- 2.- Las matrices elementales son invertibles.
- 3.- El producto de matrices invertibles es invertible.
- 4.- El producto de matrices elementales es invertible.

Ahora por lo observado podemos dar la siguiente definición de Matrices Equivalentes por Filas (MEF)

Definición

Dados $A, B \in K^{m \times n}$, diremos que A \widetilde{f} B sí y sólo sí $\exists P \in K^{m \times n}$ regular (invertible), tal que PA = B, donde P es un producto de M. E. F.

$$P = F_k * F_{k-1} * \dots * F_2 * F_1$$

8. Matriz Inversa

Diremos que $A \in K^{n \times n}$ es invertible si existe $B \in K^{n \times n}$ tal que:

$$AB = BA = I_n$$

Teorema

Diremos que una matriz $A \in K^{n \times n}$ es invertible si es posible trasformarla mediante O.E.F. o bien mediante O.E.C. en la matriz identidad (I_n) .

Notación: $B = A^{-1}$

Ejemplo

Cálculo de la inversa de una matriz mediante O. E. F.

Calcular A^{-1} si $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Consideremos la matriz ampliada (A/I_n) y aplicamos O. E. F.

$$(A/I_2) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{pmatrix} \tilde{f}_{21(-3)} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{pmatrix} \tilde{f}_{2(\frac{-1}{2})} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 3/2 & -1/2 \end{pmatrix}$$

$$\tilde{f}_{12(-2)} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3/2 & -1/2 \end{pmatrix} = (I_2/A^{-1})$$

De las O.E.F. aplicadas se tienen las siguientes M.E.:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{2\mathrm{I}(-3)} \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \coloneqq F_{2\mathrm{I}(-3)}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{2\left(\frac{-1}{2}\right)} \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \coloneqq F_{2\left(\frac{-1}{2}\right)}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{12(-2)} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \coloneqq F_{12(-2)}$$

ab[e]saM Lin- Módulo 1: Matrices

$$F_{12(-2)} * F_{2(\frac{-1}{2})} * F_{21(-3)} = \begin{pmatrix} -2 & 1\\ 3/2 & -1/2 \end{pmatrix}$$

Del ejercicio,
$$PA = I_n$$
 donde $P = A^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$

Ejemplo

Hallar la inversa de la siguiente matriz mediante O.E.F. si es posible.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & 1 \\ 0 & -2 & 1 \end{pmatrix}$$

$$(A|I_{2}) = \begin{pmatrix} 1 & 1 & 1|1 & 0 & 0 \\ -2 & 0 & 1|0 & 1 & 0 \\ 0 & -2 & 1|0 & 0 & 1 \end{pmatrix} \tilde{f}_{21}(2) \begin{pmatrix} 1 & 1 & 1|1 & 0 & 0 \\ 0 & 2 & 3|2 & 1 & 0 \\ 0 & -2 & 1|0 & 0 & 1 \end{pmatrix}$$

$$\tilde{f}_{32(1)} \begin{pmatrix} 1 & 1 & 1|1 & 0 & 0 \\ 0 & 2 & 3|2 & 1 & 0 \\ 0 & 0 & 4|2 & 1 & 1 \end{pmatrix} \tilde{f}_{2(\frac{1}{2})} \begin{pmatrix} 1 & 1 & 1|1 & 0 & 0 \\ 0 & 1 & 3/2 & 1 & 1/2 & 0 \\ 0 & 0 & 1 & 1/2 & 1/4 & 1/4 \end{pmatrix}$$

$$\tilde{f}_{13(-1)} \begin{pmatrix} 1 & 1 & 0|1/2 & -1/4 & -1/4 \\ 0 & 1 & 0|1/4 & 1/8 & -3/8 \\ 0 & 0 & 1 & 1/2 & 1/4 & 1/4 \end{pmatrix}$$

$$\tilde{f}_{23} \begin{pmatrix} -3 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0|1/2 & -1/4 & -1/4 \\ 0 & 1 & 0|1/4 & 1/8 & -3/8 \\ 0 & 0 & 1 & 1/2 & 1/4 & 1/4 \end{pmatrix}$$

$$\downarrow P = A^{-1}$$

9. Matriz Escalonada

Consideremos una matriz $A \in K^{m \times n}$. El proceso de escalonar (fila) la matriz A es la siguiente:

1.- Elegir una fila de la matriz cuyo primer elemento es "no nulo" (se sugiere tomar una fila cuyo primer elemento sea "uno").

- 2.- Cambiar la fila elegida a primera fila.
- 3.- Hacer el primer elemento de la fila "1".
- 4.- Hacer "ceros" todos los coeficientes bajo el "1" del paso (3).

Estos cuatro procesos descritos se repiten sucesivamente hasta definir el último escalón.

La matriz obtenida es un matriz escalonada: escalonada fila E.F., o bien, escalonada columna E.C.

10. Matriz Escalonada Reducida

Una matriz escalonada recudida, es una matriz escalonada tal que la columna que define el escalón es una columna de la matriz identidad I_m cuando la matriz considerada es $m \times n$ o cuando $A \in K^{m \times n}$.

Ejemplo

1. Hallar la escalonada reducida fila de A, donde

$$A = \begin{pmatrix} 4 & 3 & 2 \\ -2 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\begin{pmatrix} 4 & 3 & 2 \\ -2 & 0 & 1 \end{pmatrix} \tilde{f}_{12} \begin{pmatrix} -2 & 0 & 1 \\ 4 & 3 & 2 \end{pmatrix} \tilde{f}_{1\left(\frac{1}{2}\right)} \begin{pmatrix} 1 & 0 & -1/2 \\ 4 & 3 & 2 \end{pmatrix} \tilde{f}_{21\left(-4\right)} \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 3 & 4 \end{pmatrix}$$

$$\tilde{f}_{2\left(\frac{1}{3}\right)} \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 4/3 \end{pmatrix} \coloneqq B = \text{E.R.F. de } A.$$

2. Hállese una matriz $P \in \mathbb{R}^{2\times 2}$ invertible (regular) tal que $A \sim B$ donde B es E.R.F. de A y A del ejemplo anterior.

De lo calculado en el ejercicio anterior se tiene que $A \sim B$ (E.R.F. de A).

 $\Rightarrow \exists P$ invertible tal que

$$PA = B$$

Notación:
$$A = TB$$
 $(PA = B)$ $A \sim B$ $\downarrow \exists P \text{ invertible}$

$$PA = B$$
$$A = P^{-1}B$$
$$A = TB$$

Donde
$$P = F(1/3) F_{21}(-4) F_1(-1/2) F_{12}$$

Directamente se realiza de la siguiente manera: considere la ampliada $\left(A|I_{2}\right)$ y transforme A en su E.R.F.

$$\begin{pmatrix} 4 & 3 & 2 | 1 & 0 \\ -2 & 0 & 1 | 0 & 1 \end{pmatrix} \tilde{f}_{12} \begin{pmatrix} -2 & 0 & 1 | 0 & 1 \\ 4 & 3 & 2 | 1 & 0 \end{pmatrix} \tilde{f}_{1\left(\frac{-1}{2}\right)} \begin{pmatrix} 1 & 0 & -1/2 | 0 & -1/2 \\ 4 & 3 & 2 | 1 & 0 \end{pmatrix} \tilde{f}_{21\left(-4\right)}$$

$$\begin{pmatrix} 1 & 0 & -1/2 | 0 & -1/2 \\ 0 & 3 & 4 | 1 & 2 \end{pmatrix} \tilde{f}_{2\left(\frac{1}{3}\right)} \begin{pmatrix} 1 & 0 & -1/1 | 0 & -1/2 \\ 0 & 1 & 4/3 | 1/3 & 2/3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B := \text{E.R.F.} \qquad P \in \mathbb{R}^{2 \times 2}$$

$$\text{de } A \qquad \text{invertible}$$

De este modo PA = B

$$P$$
 A B

Lab[e]saM Lin- Módulo 1: Matrices

$$\begin{pmatrix} 0 & -1/2 \\ 1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 4 & 3 & 2 \\ -2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 4/3 \end{pmatrix}$$

Definición

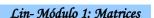
Dados $A, B \in K^{m \times n}$ diremos que A es equivalente con B por columna, anotamos $A \ \tilde{c} \ B$ sí y sólo sí:

- 1.- Existe una secuencia de matrices elementales C_1, C_2, \dots, C_k de orden $n \times n$ tales que $A \cdot C_1 \cdot C_2 \cdot \dots \cdot C_k = B$
 - 2.- Existe una matriz $Q \in K^{n \times n}$ regular (invertible, no singular) tal que AQ = B

Definición

Dados $A,B\in K^{m\times n}$ diremos que A es equivalente con B, anotamos $A\thicksim B$, si existen matrices $P\in K^{m\times m}$ y $Q\in K^{n\times n}$ regulares tal que PAQ=B

Ejemplo



Hallar matrices P y Q no triviales tales que PAQ = B, donde B es E.R.F. de A, donde $A = \begin{pmatrix} -2 & 3 & 4 \\ 3 & 1 & -1 \end{pmatrix} \in \mathbb{R}^{2\times 3}$. Como $A \in \mathbb{R}^{2\times 3}$ transformar la matriz ampliada $\left(\frac{A}{I} \middle| \frac{I_2}{I} \middle| \right)$ vía O.E.F. y O.E.C. para obtener $\left(\frac{B}{I} \middle| \frac{P}{I} \middle| \right)$

Solución

$$\left(\frac{A}{I_{3}}\middle|\frac{I_{2}}{I_{3}}\right) = \begin{pmatrix} -2 & 3 & 4 & 1 & 0 \\ \frac{3}{1} & 1 & -1 & 0 & 1 \\ \frac{1}{1} & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \tilde{f}_{12} \begin{pmatrix} 3 & 1 & -1 & 0 & 1 \\ -2 & 3 & 4 & 1 & 0 \\ \frac{1}{1} & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \tilde{c}_{12} \begin{pmatrix} 1 & 3 & -1 & 0 & 1 \\ \frac{3}{1} & -2 & 4 & 1 & 0 \\ \frac{1}{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \tilde{f}_{21(-3)}$$

$$\begin{pmatrix} 1 & 3 & -1 & 0 & 1 \\ \frac{0}{0} & -11 & 7 & 1 & -3 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \tilde{c}_{2(-\frac{1}{1})1} \begin{pmatrix} 1 & -3/11 & -1 & 0 & 1 \\ \frac{0}{0} & 1 & 7 & 1 & -3 \\ 0 & -1/11 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \tilde{c}_{21\left(\frac{3}{11}\right)} \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 7 & 0 & -1/11 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\tilde{c}_{3\mathrm{J(i)}}\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 7 & 0 & -1/11 & 0 \\ 1 & 3/11 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 3/11 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3/11 & 1 & 1/11 &$$

Luego

$$P = \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} = \underbrace{F_{21}(-3) F_{12}}_{}$$

Producto de matrices elementales.

$$Q = \begin{pmatrix} 0 & -\frac{1}{11} & \frac{7}{11} \\ 1 & \frac{3}{11} & -\frac{10}{11} \\ 0 & 0 & 1 \end{pmatrix} = C_{12}C_{2^{(-\frac{1}{11})}}C_{21^{(\frac{3}{11})}}C_{31^{(1)}}C_{32^{(-7)}}$$

Tal que

$$PAQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = B$$

¿Quién es P^{-1} , Q^{-1} ?

Notar que:

1.
$$(F_{ij})^{-1} = F_{ij}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{12} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{F_{12}} \tilde{f}_{12} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{(F_{12})^{-1}}$$

2.
$$F_i^{-1}(k) = F_i(1/k)$$
 , $k \neq 0$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{2(\frac{-1}{12})} \begin{pmatrix} 1 & 0 \\ 0 & -1/11 \end{pmatrix} \tilde{f}_{2(-11)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3.
$$(F_{ij}(k))^{-1} = F_{ij}(-k)$$
 , $k \neq 0$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tilde{f}_{21(-3)} \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \tilde{f}_{21(3)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Luego,
$$P^{-1} = (F_{21}(-3)F_{12})^{-1} = F_{12}^{-1}F_{21}(-3)^{-1} = ???$$

$$Q^{-1} = (C_{12}C_{2^{(-1/1)}}C_{2^{(3/1)}}C_{3^{(1)}}C_{3^{(-7)}})^{-1} = ???$$

Rango o Característica de una Matriz

Diremos que el número de filas no nulas (independientes) al escalonar una matriz es el rango o característica de la matriz, anotamos rango de A por rg(A) o bien ran(A).

Nota: Si $A \in K^{m \times n}$ con $m \le n$ entonces el $rg(A) \le m$. Si $m \ge n$ se tiene que $rg(A) \le n$. Si m = n se tiene que $rg(A) \le n$, aquí si el rg(A) = n decimos que A es de rango completo (una matriz de rango completo es invertible).

Ejemplo

Determine el rango de
$$B = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 1 \end{pmatrix} \tilde{f}_{21(-2)} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 1 \end{pmatrix} \tilde{f}_{31(-3)} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 6 & 8 & 7 & 1 \end{pmatrix}$$

Lab[e]saM Lin- Módulo 1: Matrices

$$\tilde{f}_{41(-6)}\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & -4 & -11 & 1 \end{pmatrix} \tilde{f}_{24}\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -11 & 1 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & -3 & 2 \end{pmatrix} \tilde{f}_{32(-1)}\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -11 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

$$\tilde{f}_{43(1)}\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -4 & -11 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

 \therefore Es de rango completo, con rg(B) = 4